Урок-проект “Оптические приборы”. 11-й класс

Урок-проект "Оптические приборы". 11-й класс Анемометр

В чем же измеряется атмосферное давление?

К сожалению, для отображения давления используется множество разных единиц измерения. Одни часы могут отображать давление в миллиметрах ртутного столба, другие — в гектопаскалях. Полный же список всех единиц выглядит так:

  • Паскали
  • Бары
  • Атмосферы
  • Миллиметры ртутного столба
  • Метры водного столба
  • Фунт-сила на квадратный дюйм (psi)

Зачастую, на часах, смарт-часах и фитнес-браслетах указывается влагозащита именно в атмосферах (atm) или барах (bar). Все современные фитнес-трекеры, начиная от Apple Watch и заканчивая Mi Band, имеют влагозащиту в 5 atm (атмосфер) или 5 bar. Эти единицы взаимозаменяемые, так как 1 atm = 1 bar.

Представить себе давление в атмосферах очень легко, так как 1 атмосфера — это и есть то давление, которое оказывает вся наша атмосфера на поверхность земли. Если бы мы взвесили столб воздуха высотой в 100 км (вся атмосфера, содержащая молекулы) и диаметром в ~1 см, он бы весил 1 кг.

Конечно же, когда речь идет о часах, производитель подразумевает не воздух, а воду. Эта маркировка в атмосферах указывает, на какую глубину можно безопасно погружать устройство. Однако вода почти в 775 раз тяжелее воздуха и соответственно давление под водой увеличивается гораздо быстрее.

Если мы хотим поднять давление воздуха с одной атмосферы до двух, нам нужно разместить над головой столб воздуха в 2 раза превышающий высоту атмосферы, то есть, нужны буквально две атмосферы.

Но чтобы ровно настолько же увеличить давление под водой, нам достаточно погрузится на 10 метров. Поэтому, давление в атмосферах под водой можно считать очень просто: 1 атм = 10 метр глубины. Если часы выдерживают давление в 5 атм, это значит, что они выдерживают давление, создаваемое водой на глубине 50 метров.

Про анемометры:  Карманный ловец ветра – обзор мини анемометра GM816A - самые полезные статьи в интернет-магазине радиодеталей и радиоэлектроники Electronoff

Одна атмосфера — это также 760 миллиметров ртутного столба или около 10 метров водяного столба. Это значит, что если бы мы попытались выпить ртуть со стакана через трубочку, то нам бы удалось это сделать только, если длина этой трубочки будет менее 76 сантиметров. Одна атмосфера просто не сможет поднять ртуть выше этого значения.

То же касается и воды. Если бы мы налили в очень длинную (например, 15 метровую) пробирку воду, а затем перевернули ее и поставили в ведро с водой, то вода в пробирке опустилась бы под своим весом до отметки в 10 метров, так как дальше давление атмосферы сравнилось бы с силой тяжести:

Почему такая разница между ртутью и водой? Просто ртуть в 13 раз тяжелее воды, именно поэтому давление в 1 атмосферу (давление воздуха над уровнем моря) поднимает воду в пробирке гораздо выше (10 метров против 76 см).

Таким образом, если ваши часы или смартфон показывают давление, например, 730 мм рт. ст., это значит, что атмосферное давление понизилось, так как нормой считается именно 760 мм. Когда давление понизилось, оно уже не сможет поднять так высоко ртуть, соответственно, уровень ртути в трубочке (или пробирке) опустится с 76 см до 73 см.

К слову, именно таким образом и измеряли давление очень долгое время — смотрели, как сильно опускается и поднимается ртуть в стеклянной трубке. Но в современных гаджетах, конечно же, нет никакой ртути. И здесь мы плавно переходим к главному вопросу.

В мобильных устройствах используются MEMS-барометры. MEMS — это аббревиатура, которую можно расшифровать как микроэлектромеханические системы (МЭМС). Собственно, это микроскопические механизмы с электроникой внутри.

Теоретически измерить давление очень легко. Для этого можно сделать небольшую коробочку с гибкой мембраной:

Что будет внутри коробочки — решать вам. Можно полностью откачать все молекулы воздуха, чтобы там образовался вакуум. Тогда мембрана будет изгибаться внутрь под давлением атмосферы. Чем выше давление, тем сильнее будет изогнута мембрана и наоброт:

Можно внутри коробочки сделать давление, равное одной атмосфере, то есть, идеальному давлению на уровне моря — 760 мм рт. ст.

В таком случае наша мембрана будет прогибаться то внутрь, когда атмосферное давление будет выше нормы (выше давления внутри коробочки), то наружу, когда атмосферное давление упадет и станет ниже того, что внутри коробочки:

Это примерно как наши уши. Когда мы взлетаем на самолете или поднимаемся на скоростном лифте, давление атмосферы резко падает (мы «выплываем со дна» атмосферы на «поверхность», где давление гораздо ниже). Но давление воздуха внутри уха (за барабанной перепонкой) осталось прежним, каким было еще на земле.

В результате барабанная перепонка продавливается наружу и мы чувствуем, будто уши заложило. Если глотнуть слюну, в глотке автоматически откроются небольшие отверстия, ведущие прямо к ушам и воздух (избыточное давление в ушах) по трубкам выйдет прямо в носоглотку.

Только в случае с барометром нам ни в коем случае нельзя запускать воздух в коробочку, ведь смысл именно в том, чтобы мембрана изгибалась.

Вот как выглядит реальный мобильный барометр:

Обратите внимание на его размеры (2*2*0.75 мм). И это даже не коробочка с воздухом внутри. Это общая «упаковка», под которой скрывается сама коробочка с мембраной и микросхема. То есть, сам чувствительный элемент здесь еще раз в 6-7 меньше. Вот еще одно фото барометра рядом с линейкой для оценки масштаба:

Ну хорошо, с этим всё ясно. Мембрана движется в ответ на изменение давления, это чисто механический процесс, понятный даже ребенку. Но как смартфон отслеживает это изменение? Какой датчик и каким образом может уловить столь ничтожные колебания кремниевой мембраны? А они действительно настолько незначительные, что увидеть их невооруженным глазом невозможно.

Для отслеживания изгиба мембраны используется мост Уитстона.

Я, правда, не хочу выходить за рамки популярной статьи и углубляться в подробности, которые будут неинтересны широкому кругу читателей. Но, с другой стороны, объяснение принципа работы барометра останется неполным, так как совершенно неясно, как же смартфон фиксирует изгибы мембраны.

Поэтому давайте поступим так. Если тема кажется вам уже раскрытой, не стоит портить впечатление от статьи, погружаясь в детали. Можете просто поставить оценку статье и подписаться на наш Telegram-канал, чтобы не пропускать другие интересные материалы.

Но если вы все еще здесь, тогда продолжим!

Урок 49. линзы. оптические приборы.

Оптические приборы устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

   Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете.

   При первичной оценке качества прибора рассматриваются лишь основные его характеристики:

   Разрешающая сила (способность) характеризует способность оптических приборов давать раздельные изображения двух близких друг к другу точек объекта.

   Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения.

   Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.

   Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения h, то увеличение m определяется по формуле:

    m = h/H

   Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы.

   Важной характеристикой приборов для визуального наблюдения является видимое увеличение М. Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga, где a – угол, под которым наблюдатель видит предмет невооруженным глазом, а b – угол, под которым глаз наблюдателя видит предмет через прибор.

   Основной частью любой оптической системы является линза. Линзы входят в состав практически всех оптических приборов.

   Линзаоптически прозрачное тело, ограниченное двумя сферическими поверхностями.

Урок-проект "Оптические приборы". 11-й класс

   Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

   Линзы бывают собирающими и рассеивающими. Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.

Урок-проект "Оптические приборы". 11-й класс

   Виды линз:

Урок-проект "Оптические приборы". 11-й класс

   Основные обозначения в линзе:

Урок-проект "Оптические приборы". 11-й класс

   Прямая, проходящая через центры кривизны O1 и O2 сферических поверхностей, называется главной оптической осью линзы.

   В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. 

   Оптический центр линзы – точка, сквозь которую световые лучи проходят не преломляясь в линзе.

   Главная оптическая ось – прямая, проходящая через оптический центр линзы, перпендикулярно линзе.

   Все прямые, проходящие через оптический центр, называются побочными оптическими осями.

   Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые.

   Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F’, которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус.

   Фокальная плоскость – прямая, перпендикулярная главной оптической оси линзы и проходящая через фокус линзы.

   Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F.

   Преломление параллельного пучка лучей в собирающей линзе.

   Урок-проект "Оптические приборы". 11-й класс

   Преломление параллельного пучка лучей в рассеивающей линзе.

   Урок-проект "Оптические приборы". 11-й класс

   Точки O1 и O2 – центры сферических поверхностей, O1O2 – главная оптическая ось, O – оптический центр, F – главный фокус, F’ – побочный фокус, OF’ – побочная оптическая ось, Ф – фокальная плоскость.

   На чертежах тонкие линзы изображают в виде отрезка со стрелками:

собирающая: Урок-проект "Оптические приборы". 11-й класс рассеивающая: Урок-проект "Оптические приборы". 11-й класс рассеивающая: Урок-проект "Оптические приборы". 11-й класс

   Основное свойство линз способность давать изображения предметов. Изображения бывают прямыми и перевернутыми, действительными и мнимыми, увеличенными и уменьшенными.

   Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Для построения изображения в линзе используют любые два из трех лучей:

Урок-проект "Оптические приборы". 11-й класс

   Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

 Урок-проект "Оптические приборы". 11-й класс

   Величину D, обратную фокусному расстоянию называют оптической силой линзы.

   Единицей измерения оптической силы является диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м:  1 дптр = м–1

   Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

   Величины d и f также подчиняются определенному правилу знаков:
d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
d < 0 и f < 0 – для мнимых источников и изображений.

   Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями. Главные из них – сферическая и хроматическая аберрации.

   Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

   Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

   В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

   Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

   При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик – светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

   Микроскоп, лупа, увеличительное стекло.

   Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом.

   Из оптической схемы можно определить размер увеличенного изображения.

Урок-проект "Оптические приборы". 11-й класс

   Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения: M = tgb /tga = (H/f)/(H/v) = v/f, где f – фокусное расстояние линзы, v – расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации. M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза. В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат.

   Телескоп.

  Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы.

Урок-проект "Оптические приборы". 11-й класс

   Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на схеме), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b, исходящий не из тех точек предмета, откуда пришли лучи a и c, падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b. Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы можно получить выражение для видимого увеличения M телескопа: M = -tgb /tga = -F/f’ (или F/f). Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.

   Бинокль.

   Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего – Порро), в каждую из которых входят две прямоугольные призмы (с основанием под 45°), ориентированные навстречу прямоугольными гранями.

Урок-проект "Оптические приборы". 11-й класс

   Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6-9°), биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения. В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, – его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличением (в кратах) и диаметром объектива (в миллиметрах), например, 8*40 или 7*50.

   Оптический прицел.

   В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия.

   Дальномер.

   Оптические дальномеры, с помощью которых измеряют расстояния до объектов, бывают двух типов: монокулярные и стереоскопические. Хотя они различаются конструктивными деталями, основная часть оптической схемы у них одинакова и принцип действия один: по известной стороне (базе) и двум известным углам треугольника определяется неизвестная его сторона. Два параллельно ориентированных телескопа, разнесенных на расстояние b (база), строят изображения одного и того же удаленного объекта так, что он кажется наблюдаемым из них в разных направлениях (базой может служить и размер цели). Если с помощью какого-нибудь приемлемого оптического устройства совместить поля изображений обоих телескопов так, чтобы их можно было рассматривать одновременно, окажется, что соответствующие изображения предмета пространственно разнесены. Существуют дальномеры не только с полным наложением полей, но и с половинным: верхняя половина пространства изображений одного телескопа объединяется с нижней половиной пространства изображений другого. В таких приборах с помощью подходящего оптического элемента проводится совмещение пространственно разнесенных изображений и по относительному сдвигу изображений определяется измеряемая величина. Часто в качестве сдвигающего элемента служит призма или комбинация призм.

Урок-проект "Оптические приборы". 11-й класс

МОНОКУЛЯРНЫЙ ДАЛЬНОМЕР. A – прямоугольная призма; B – пентапризмы; C – линзовые объективы; D – окуляр; E – глаз; P1 и P2 -неподвижные призмы; P3 – подвижная призма; I 1 и I 2 – изображения половин поля зрения

   В схеме монокулярного дальномера, показанной на рисунке, эту функцию исполняет призма P3; она связана со шкалой, проградуированной в измеряемых расстояниях до объекта. Пентапризмы B используются как отражатели света под прямым углом, поскольку такие призмы всегда отклоняют падающий световой пучок на 90°, независимо от точности их установки в горизонтальной плоскости прибора. Изображения, создаваемые двумя телескопами, в стереоскопическом дальномере наблюдатель видит сразу обоими глазами. База такого дальномера позволяет наблюдателю воспринимать положение объекта объемно, на некоторой глубине в пространстве. В каждом телескопе имеется сетка с марками, соответствующими значениям дальности. Наблюдатель видит шкалу расстояний, уходящую в глубь изображаемого пространства, и по ней определяет удаленность объекта.

   Осветительные и проекционные приборы. Прожекторы.

   В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.

   Диаскоп.

   В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране. В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же.

Урок-проект "Оптические приборы". 11-й класс

СХЕМА ДИАСКОПА. A – диапозитив; B – линзовый конденсор; C – линзы проекционного объектива; D – экран; S – источник света

   Спектральные приборы.

   Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.

   Спектрометр.

   В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.

   Спектрограф.

   Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210-800 нм), стекла (360-2500 нм) или каменной соли (2500-16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области.

   Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом. Специальный затвор позволяет открывать объектив на время экспозиции.

   Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

   В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F. Это приводит к увеличению глубины резкости.

Урок-проект "Оптические приборы". 11-й класс

   Объектив современной фотокамеры состоит из нескольких линз, объединенных в оптические системы (например, оптическая схема Тессар). Число линз в объективах самых простых фотокамер — от одной до трех, а в современных дорогих фотоаппаратах их бывает до десяти или даже восемнадцати.

Урок-проект "Оптические приборы". 11-й класс

Оптическая схема Тессар

   Оптических систем в объективе может быть от двух до пяти. Практически все оптические схемы устроены и работают одинаково – они фокусируют проходящие через линзы лучи света на светочувствительной матрице.

   Только от объектива зависит качество изображения на снимке, будет ли фотография резкой, не исказятся ли на снимке формы и линии, хорошо ли она передаст цвета — все это зависит от свойств объектива, поэтому объектив и является одним из самых важных элементов современной фотокамеры.

   Линзы объектива делают из специальных сортов оптического стекла или оптической пластмассы.  Создание линз одно из самых дорогостоящих операций создания фотокамеры. В сравнении стеклянных и пластмассовых линз стоит отметить, то пластмассовые линзы дешевле и легче. В настоящее время большинство объективов недорогих любительских компактных камер изготавливается из пластмассы. Но, такие объективы подвержены царапинам и не так долговечны, примерно через два-три года они мутнеют, и качество фотографий оставляет желать лучшего. Оптика камер подороже изготавливается из оптического стекла.

   В настоящее время большинство объективов компактных фотокамер изготавливается из пластмассы.

   Между собой линзы объектива склеивают или соединяют при помощи очень точно рассчитанных металлических оправ. Склейку объективов можно встретить намного чаще, нежели металлические оправы.

   Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D) на удаленном экране Э. Система линз K, называемая конденсором, предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O.

Урок-проект "Оптические приборы". 11-й класс

Оцените статью
Анемометры
Добавить комментарий