Устройство сравнения это в метрологии

Устройство сравнения это в метрологии Анемометр

Техническое средство или специально создаваемая среда, посредством которых возможно выполнять сравнения друг с другом мер однородных величин или показания измерительных приборов.

Примечание – Иногда техническое средство снабжается средством измерений, обеспечивающим функцию сравнения.

1 Рычажные весы, на одну чашку которых устанавливается эталонная гиря, а на другую поверяемая, – есть средство для их сравнения.

2 Градуированная жидкость для сравнения показаний эталонного и рабочего ареометров служит необходимой средой для градуирования рабочих ареометров.

3 Температурное поле, создаваемое термостатом для сравнения показаний термометров, является необходимой средой.

4 Давление среды, создаваемое компрессором, может быть измерено поверяемым и эталонным манометрами одновременно. На основании показаний эталонного прибора градуируется поверяемый прибор

Средство сравнения, предназначенное для сличения мер однородных величин.

1 Рыжачные весы.

2 Компаратор для сличения нормальных элементов

Узаконенное средство измерений

de vorschrirtmassiges Messmittel

en legal measuring instrument

fr instrument de mesure légal

Средство измерений, признанное годным и допущенное для применения уполномоченным на то органом.

1 Государственные эталоны страны становятся таковыми в результате утверждения первичных эталонов национальным органом по стандартизации и метрологии.

2 Рабочие средства измерений, предназначенные для серийного выпуска, узакониваются путем утверждения типа

Вспомогательные средства, служащие для обеспечения необходимых условий для выполнения измерений с требуемой точностью.

3 Специальные противовибрационные фундаменты.

4 Устройства, экранирующие влияние электромагнитных полей.

5 Тренога для установки прибора по уровню

en measuring chain

fr chaîne de mesure

Совокупность элементов средств измерений, образующих непрерывный путь прохождения измерительного сигнала одной физической величины от входа до выхода.

Примечание – Измерительную цепь измерительной системы называют измерительным каналом

Приборы сравнения предназначены для непосредственного сравнения измеряемой величины с величиной, значение которой известно (с мерой). Приборы сравнения могут работать в двух режимах: в равновесном режиме и в неравновесном режиме. Структурные схемы приборов сравнения приведены на рис.

При работе в равновесном режиме (а) измеряемая величина Х полностью компенсируется воздействием меры. Значение меры или ее части, необходимой для компенсации величины Х, в процессе измерения определяется по отсчетному устройству.

В неравновесном режиме разность показаний между мерой и измеряемой величиной измеряется в отсчетном устройстве, шкала которого градуирована в единицах измеряемой величины.

В данном курсе будут рассмотрены мосты постоянного и переменного тока и компенсаторы.

Мосты постоянного тока. Одинарный мост.

Одинарные мосты постоянного тока предназначены для измерения сопротивлений величиной от 10 Ом и более.

Схема одинарного моста приведена на рис.

Диагональ, обозначенная на рисунке bd- называется диагональю питания. В нее включен источник питания (батарея) G. Диагональ ас называется измерительной диагональю. В нее включен указатель равновесия (гальванометр) Р. Выведем условия равновесия моста.

В равновесном режиме Iур=0. Это условие выполняется когда:

Из первого закона Кирхгофа, с учетом того, что

I4=I1 и I3=I2 . Принимая во внимание все вышесказанное можно записать:

– является условием равновесия моста.

Чувствительность моста по току и по напряжению определяются как:

– чувствительность моста по напряжению.

DIyp и DUyp – изменение силы тока и напряжения в измерительной диагонали, DR/R – отношение изменения сопротивления плеча моста к полному сопротивлению этого плеча.

В частном случае, при R1=R2=R3=R4, чувствительность моста может быть записана как:

где R10 – сопротивление R1 при равновесии.

где Rур – сопротивление указателя равновесия.

Двойные мосты постоянного тока

Для точных измерений сопротивлений малой величины применяют двойные мосты.

В процессе измерения измеряемое сопротивление Rx сравнивается с образцовым сопротивлением R0. Уравнения, поясняющие процесс измерения приведены ниже. По второму закону Кирхгофа можно записать:

Для упрощения будем считать: R1=R3 и R2=R4.

Схема двойного моста представлена на рис.

Тогда уравнения можно переписать как:

В результате сопротивление неизвестного резистора можно выразить следующим образом:

Мосты переменного тока.

Мосты переменного тока применяются для измерения, как активных,

так и реактивных сопротивлений (емкостных и индуктивных)

Уравнения, поясняющие принцип действия моста, записываются по аналогии с уравнениями, приведенными для одинарного моста постоянного тока, и имеют вид:

Схема моста переменного тока приведена на рис.

следует: I4=I1 и I3=I2. Принимая во внимание все вышесказанное можно записать:

При работе на переменном напряжении эти уравнения должны быть записаны в показательной форме:

Из этих уравнений следуют условия равновесия моста:

. Данная система уравнений показывает, что мост переменного тока может быть уравновешен только при определенном характере нагрузки и схеме включения сопротивлений в ветвях.

Рассмотрим работу автоматических мостов. Автоматический мост выполнен на базе реверсивного двигателя, охваченного отрицательной обратной связью по току в измерительной диагонали.

Прибор работает следующим образом: к питающей диагонали подключен источник питания. В измерительную диагональ введены переменный резистор R и усилитель тока УТ. К выходу усилителя подключен реверсивный двигатель РД. Вал двигателя, с одной стороны управляет перемещением движка резистора R, а с другой стороны соединен со шкалой прибора. Усилитель тока подключен таким образом, чтобы при вращении двигателя сопротивления R’ и R’’ изменяясь, уменьшали ток в измерительной диагонали бг. Если ток в диагонали бг будет равен нулю, управляющий сигнал на выходе усилителя исчезнет и двигатель остановится. Это состояние будет зафиксировано на шкале, которая проградуирована в единицах измеряемой величины. Если сопротивление в одном из плеч моста изменить – мост будет разбалансирован, в измерительной диагонали появится ток и процесс компенсации повторится.

Упрощенная схема такого моста приведена на рис.

Компенсаторами называются приборы сравнения, в основу которых положен принцип компенсации Э.Д.С. Применяются компенсаторы для измерения напряжений и Э.Д.С. с высокой точностью. Схема компенсатора приведена на рис.

На приведенной схеме приняты следующие обозначения:

Gp- источник рабочего тока; Gn- нормальный элемент; Gx- источник измеряемого напряжения; R- регулируемый резистор; Ro образцовый резистор; Rk- компенсационный резистор; P- магнитоэлектрический гальванометр.

Если ключ К находится в положении 1, выполняется равенство:

Если ключ находится в положении 2, выполняется равенство:

Таким образом, можно сравнить напряжение неизвестного источника Gx c напряжением нормального элемента Gn. Это можно пояснить соотношением:

Такие компенсаторы применяют для измерения малых напряжений, например на выходе.

Классификация средств измерения

Средство измерения (СИ) – это техническое средство или совокупность средств, применяющееся для осуществления измерений и обладающее нормированными метрологическими характеристиками. При помощи средств измерения физическая величина может быть не только обнаружена, но и измерена.

Средства измерения классифицируются по следующим критериям:

1) по способам конструктивной реализации;

2) по метрологическому предназначению.

По способам конструктивной реализации средства измерения делятся на:

Меры величины – это средства измерения определенного фиксированного размера, многократно используемые для измерения. Выделяют:

Некоторое количество мер, технически представляющее собой единое устройство, в рамках которого возможно по—разному комбинировать имеющиеся меры, называют магазином мер.

Объект измерения сравнивается с мерой посредством компараторов (технических приспособлений). Например, компаратором являются рычажные весы.

К однозначным мерам принадлежат стандартные образцы (СО). Различают два вида стандартных образцов:

1) стандартные образцы состава;

2) стандартные образцы свойств.

Стандартный образец состава или материала – это образец с фиксированными значениями величин, количественно отражающих содержание в веществе или материале всех его составных частей.

Стандартный образец свойств вещества или материала – это образец с фиксированными значениями величин, отражающих свойства вещества или материала (физические, биологические и др.).

Каждый стандартный образец в обязательном порядке должен пройти метрологическую аттестацию в органах метрологической службы, прежде чем начнет использоваться.

Стандартные образцы могут применяться на разных уровнях и в разных сферах. Выделяют:

4) СО организации (предприятия).

Измерительные преобразователи (ИП) – это средства измерения, выражающие измеряемую величину через другую величину или преобразующие ее в сигнал измерительной информации, который в дальнейшем можно обрабатывать, преобразовывать и хранить. Измерительные преобразователи могут преобразовывать измеряемую величину по—разному. Выделяют:

1) аналоговые преобразователи (АП);

2) цифроаналоговые преобразователи (ЦАП);

3) аналого—цифровые преобразователи (АЦП). Измерительные преобразователи могут занимать различные позиции в цепи измерения. Выделяют:

1) первичные измерительные преобразователи, которые непосредственно контактируют с объектом измерения;

2) промежуточные измерительные преобразователи, которые располагаются после первичных преобразователей. Первичный измерительный преобразователь технически обособлен, от него поступают в измерительную цепь сигналы, содержащие измерительную информацию. Первичный измерительный преобразователь является датчиком. Конструктивно датчик может быть расположен довольно далеко от следующего промежуточного средства измерения, которое должно принимать его сигналы.

Обязательными свойствами измерительного преобразователя являются нормированные метрологические свойства и вхождение в цепь измерения.

Измерительный прибор – это средство измерения, посредством которого получается значение физической величины, принадлежащее фиксированному диапазону. В конструкции прибора обычно присутствует устройство, преобразующее измеряемую величину с ее индикациями в оптимально удобную для понимания форму. Для вывода измерительной информации в конструкции прибора используется, например, шкала со стрелкой или цифроуказатель, посредством которых и осуществляется регистрация значения измеряемой величины. В некоторых случаях измерительный прибор синхронизируют с компьютером, и тогда вывод измерительной информации производится на дисплей.

В соответствии с методом определения значения измеряемой величины выделяют:

1) измерительные приборы прямого действия;

2) измерительные приборы сравнения.

Измерительные приборы прямого действия – это приборы, посредством которых можно получить значение измеряемой величины непосредственно на отсчетном устройстве.

Измерительный прибор сравнения – это прибор, посредством которого значение измеряемой величины получается при помощи сравнения с известной величиной, соответствующей ее мере.

Измерительные приборы могут осуществлять индикацию измеряемой величины по—разному. Выделяют:

1) показывающие измерительные приборы;

2) регистрирующие измерительные приборы.

Разница между ними в том, что с помощью показывающего измерительного прибора можно только считывать значения измеряемой величины, а конструкция регистрирующего измерительного прибора позволяет еще и фиксировать результаты измерения, например посредством диаграммы или нанесения на какой—либо носитель информации.

Отсчетное устройство – конструктивно обособленная часть средства измерений, которая предназначена для отсчета показаний. Отсчетное устройство может быть представлено шкалой, указателем, дисплеем и др. Отсчетные устройства делятся на:

1) шкальные отсчетные устройства;

2) цифровые отсчетные устройства;

3) регистрирующие отсчетные устройства. Шкальные отсчетные устройства включают в себя шкалу и указатель.

Шкала – это система отметок и соответствующих им последовательных числовых значений измеряемой величины. Главные характеристики шкалы:

1) количество делений на шкале;

Деление шкалы – это расстояние от одной отметки шкалы до соседней отметки.

Длина деления – это расстояние от одной осевой до следующей по воображаемой линии, которая проходит через центры самых маленьких отметок данной шкалы.

Цена деления шкалы – это разность между значениями двух соседних значений на данной шкале.

Диапазон показаний шкалы – это область значений шкалы, нижней границей которой является начальное значение данной шкалы, а верхней – конечное значение данной шкалы.

Диапазон измерений – это область значений величин в пределах которой установлена нормированная предельно допустимая погрешность.

Пределы измерений – это минимальное и максимальное значение диапазона измерений.

Практически равномерная шкала – это шкала, у которой цены делений разнятся не больше чем на 13 % и которая обладает фиксированной ценой деления.

Существенно неравномерная шкала – это шкала, у которой деления сужаются и для делений которой значение выходного сигнала является половиной суммы пределов диапазона измерений.

Выделяют следующие виды шкал измерительных приборов:

Односторонняя шкала – это шкала, у которой ноль располагается в начале.

Двусторонняя шкала – это шкала, у которой ноль располагается не в начале шкалы.

Симметричная шкала – это шкала, у которой ноль располагается в центре.

Измерительная установка – это средство измерения, представляющее собой комплекс мер, ИП, измерительных приборов и прочее, выполняющих схожие функции, используемые для измерения фиксированного количества физических величин и собранные в одном месте. В случае, если измерительная установка используется для испытаний изделий, она является испытательным стендом.

Измерительная система – это средство измерения, представляющее собой объединение мер, ИП, измерительных приборов и прочее, выполняющих схожие функции, находящихся в разных частях определенного пространства и предназначенных для измерения определенного числа физических величин в данном пространстве.

По метрологическому предназначению средства измерения делятся на:

1) рабочие средства измерения;

Рабочие средства измерения (РСИ) – это средства измерения, используемые для осуществления технических измерений. Рабочие средства измерения могут использоваться в разных условиях. Выделяют:

1) лабораторные средства измерения, которые применяются при проведении научных исследований;

2) производственные средства измерения, которые применяются при осуществлении контроля над протеканием различных технологических процессов и качеством продукции;

3) полевые средства измерения, которые применяются в процессе эксплуатации самолетов, автомобилей и других технических устройств.

К каждому отдельному виду рабочих средств измерения предъявляются определенные требования. Требования к лабораторным рабочим средствам измерения – это высокая степень точности и чувствительности, к производственным РСИ – высокая степень устойчивости к вибрациям, ударам, перепадам температуры, к полевым РСИ – устойчивость и исправная работа в различных температурных условиях, устойчивость к высокому уровню влажности.

Эталоны – это средства измерения с высокой степенью точности, применяющиеся в метрологических исследованиях для передачи сведений о размере единицы. Более точные средства измерения передают сведения о размере единицы и так далее, таким образом образуется своеобразная цепочка, в каждом следующем звене которой точность этих сведений чуть меньше, чем в предыдущем.

Сведения о размере единицы предаются во время проверки средств измерения. Проверка средств измерения осуществляется с целью утверждения их пригодности.

Средство измерений – это техническое средство, используемое при измерениях и имеющие нормированные метрологические свойства. К средствам измерений относят меры и измерительные приборы, преобразователи, установки и системы. От средств измерений зависит правильное определение значения измеряемой величины в процессе измерения.

Мера – это средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря – мера массы, измерительный резистор – мера электрического сопротивления и т.п. К мерам относятся так же стандартные образцы и эталонные вещества.

Стандартный образец – это мера для воспроизведения единиц величин, характеризующих свойства или состав веществ и материалов или среднелегированной стали с аттестованным содержанием химических элементов, образцы шероховатости поверхности.

Эталонное вещество – это вещество с известными свойствами, воспроизводимыми при соблюдении условий приготовления, указанных в утвержденной спецификации, например «чистая» вода, «чистые» газы, «чистые» металлы.

Эталонные вещества воспроизводят строго регламентированный состав веществ и широко используется при производстве количественных химических анализов и в создании реперных точек шкал. Например, «чистый» цинк служит для воспроизведения температуры ≈420 °С.

В случае если мера должна использоваться исключительно со значениями, вычисляемыми согласно инструкции по эксплуатации с учетом поправок, приведенных в сопроводительной документации, то применяют меру не с номинальным, а с действительным значением.

Меры подразделяют на однозначные и многозначные.

Однозначная мера воспроизводит физическую величину одного размера. По сути, она воспроизводит либо единицу измерения, либо некоторое определенное числовое значение данной физической величины. Например, измерительная катушка сопротивления, гиря, плоскопараллельная концевая мера длины, измерительная колба, измерительный резистор, нормальный элемент, конденсатор постоянной емкости.

Из однозначных мер собирают наборы мер. Набор мер – это специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера, например набор измерительных конденсаторов, набор плоскопараллельных концевых мер длины, набор гирь.

Многозначная мера воспроизводит ряд одноименных величин различного размера, например конденсатор переменной емкости, вариометр индуктивности, линейки с миллиметровыми делениями.

Эталонные средства измерений предназначены для передачи размеров единиц физических величин от эталонов или более точных образцовых средств рабочим средствам. Эталонными средствами измерений являются меры, измерительные приборы и устройства, прошедшие метрологическую аттестацию и утвержденные органами государственной или ведомственной метрологической службы в качестве эталонных. По назначению следует различать исходные и подчиненные эталонные средства измерений.

Исходными называют эталонные средства измерений, от которых размер единицы передается с наивысшей в данном подразделении метрологической службы точностью.

Подчиненными называют эталонные средства измерений, которым передается размер единицы от исходного эталонного средства измерений непосредственно или через другие эталонные средства измерений.

В зависимости от погрешности эталонные средства измерений подразделяются на разряды. Для различных видов измерений, проводимых в отрасли, устанавливается различное число разрядов эталонных средств измерений, предусмотренное стандартами на поверочные схемы данного вида средств измерений. Разряды служат основой для их метрологического соподчинения: эталонные средства 1-го разряда поверяются, как правило, непосредственно по рабочим эталонам, а 2-го и последующих разрядов — по эталонным средствам предшествующих разрядов. Например, эталонными мерами электродвижущей силы 1-го разряда служат нормальные элементы с погрешностью ±2·10-4 %, а эталонными мерами 2-го разряда — нормальные элементы с погрешностью ±5·10-4 %. Эталонные меры массы (гири) и измерительные приборы для измерения давления делятся на четыре разряда.

Разделение средств измерений на эталонные и рабочие определяется их метрологическим назначением. Различные экземпляры одного и того же средства измерений могут выполнять функции эталонного или рабочего средства. Однако экземпляр средства измерений, выполняющий функции эталонного средства, не используют для обычных технических измерений.

Эталонные средства измерений выполняют в системе обеспечения единства измерений в стране очень ответственную роль, так как они «распространяют» единицы, передавая их размер другим средствам измерений, поэтому они подлежат тщательному хранению и поверку их проводят настолько часто, чтобы была обеспечена требуемая точность и достоверность результатов измерений. Применять их следует только для поверки других средств измерений. Средства измерений, аттестованные в качестве эталонных, допускается применять в качестве рабочих только в особых случаях, с разрешения органа метрологической службы, производившего аттестацию этих средств измерений.

Рабочие средства применяют для измерений, не связанных с передачей размера единиц, то есть они служат для технических измерений в лабораториях или на производстве.

Для эталонного средства измерений не так важно, насколько велики поправки к его показаниям, как важны стабильность и воспроизводимость его показаний. Поэтому к эталонным средствам измерений в отличие от рабочих предъявляют более высокие требования в отношении воспроизводимости показаний. К рабочим же средствам измерений предъявляют специфические требования, связанные с условиями их применения.

Измерительный прибор представляет собой средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

Результаты измерений приборами выдаются их отсчетными устройствами. Последние подразделяют на шкальные, цифровые и регистрирующие.

Шкальные отсчетные устройства состоят из шкалы, представляющей собой совокупность отметок и чисел, изображающих ряд последовательных значений измеряемой величины, и указателя (стрелки, электронного луча и др.), связанного с подвижной системой прибора.

Отметки шкалы, у которых проставлено числовое значение, называются числовыми отметками шкалы.

Основными характеристиками шкалы рассматриваемого отсчетного устройства являются: длина деления шкалы — расстояние между осями или центрами двух соседних отметок (штрихов или точек) шкалы, измеренное вдоль ее базовой линии, то есть линии, проходящей через середины ее самых коротких отметок, и цена деления шкалы — значение измеряемой величины, которое вызывает перемещение подвижного элемента отсчетного устройства на одно деление, то есть модуль разности значений измеряемой величины, соответствующих двум соседним отметкам шкалы.

Указанные на шкале наименьшее и наибольшее значения измеряемой величины называются соответственно начальным и конечными значениями шкалы.

Область значений, ограниченная начальным и конечным значениями шкалы, называется диапазоном показаний.

Диапазон измерений — это та часть диапазона показаний, для которой нормированы пределы допускаемых погрешностей средства измерений. Наименьшее и наибольшее значения диапазона измерений называются соответственно нижним и верхним пределами измерений (рис. 1.) В технических приборах диапазон измерений и диапазон показаний, как правило, совпадают.

Устройство сравнения это в метрологии

Значение величины, определяемое по отсчетному устройству средства измерений и выраженное в принятых единицах этой величины, называют показанием средства измерений. Показание может быть выражено как:

Xn = N·c или Xn = Nдел·сдел,

где N — отсчет (неименованное число, отсчитанное по отсчетному устройству средства измерений либо полученное счетом последовательных отметок или сигналов); с — постоянная средства измерений (число, именованное в единицах измеряемой величины; Nдел
— число делений, подсчитанных по отсчетному устройству); сдел — цена деления шкалы как разность значений величины, соответствующих двум соседним отметкам шкалы.

П р и м е р — На рис. 2 показано различие понятий постоянной прибора с и цены деления сдел, из видно, что максимальный отсчет Nmax = 50, а положению стрелки отвечает отсчет N = 24, Если наибольшее показание вольтметра Umax = 50 В, то постоянная вольтметра:

Устройство сравнения это в метрологии

а показание, отвечающее положению стрелки,

U=N·c= 24·1=24 B

На этой шкале максимальное число делений Nдел max = 25 дел, а положению стрелки отвечает Nдел = 12 дел. Следовательно, цена деления шкалы вольтметра

Устройство сравнения это в метрологии

U = Nдел · сдел = 12 дел · 2 В/дел = 24 В.

Числовые значения с и сдел = сU B/дел зависят от конечного значения шкалы данного диапазона измерений.

Устройство сравнения это в метрологии

Шкалы приборов бывают односторонними (рис. 3), двухсторонними

(рис. 4) и безнулевыми (рис. 5). В односторонних шкалах один из пределов равен нулю.

Устройство сравнения это в метрологии

В двухсторонних шкалах нулевое значение расположено на шкале. В безнулевых — на шкале нет нулевого значения.

В соответствии с ГОСТ 8.401—80 «ГСИ. Классы точности средств измерений. Общие требования» практически равномерной шкалой называется шкала, длина делений которой отличается друг от друга не более чем на 30 % и имеет постоянную цену делений. Существенно неравномерная шкала — это шкала с сужающимися делениями, для которой значение выходного сигнала, соответствующее полусумме верхнего и нижнего пределов диапазона измерений входного (выходного) сигнала, находится в интервале между 65 и 100 % длины шкалы, соответствующей диапазону измерений входного (выходного) сигнала. Степенная шкала — это шкала с расширяющимися или сужающимися делениями, отличная от шкал, указанных выше.

Чувствительность измерительного прибора — это отношение изменения сигнала Δl на выходе измерительного прибора к вызывающему его изменению измеряемой величины ΔА, то есть,

Устройство сравнения это в метрологии

Из формулы следует, что чем меньше изменение измеряемой величины, отмечаемое прибором, тем выше его чувствительность, то есть она обратно пропорциональна цене деления шкалы.

Цифровые отсчетные устройства бывают либо механические, либо световые. Механические отсчетные устройства используют в тех цифровых приборах, у которых измеряемая величина преобразуется в соответствующие углы поворота валов. Световые табло, состоящие, как правило, из системы индикаторных газоразрядных ламп, подсвечивающих те или иные цифры, используются в электронных цифровых приборах, у которых измеряемые величины преобразуются в определенную последовательность импульсных сигналов.

Регистрирующие отсчетные устройства состоят из пишущего или печатного механизма и ленты. Простейшее пишущее устройство представляет собой перо, заполненное чернилами, фиксирующее результат измерения на бумажной ленте. В более сложных устройствах запись результатов измерений может производиться световым или электронным лучом, перемещение которого зависит от значений измеряемых величин.

Измерительные приборы классифицируются по весьма разнообразным признакам, к числу которых относят и рассматриваемые ниже способы определения значений измеряемой величины и образования показаний.

По способу определения значения измеряемой величины приборы делятся на две группы: прямого действия и сравнения.

Приборы прямого действия (непосредственной оценки) позволяют получать значения измеряемой величины на отсчетном устройстве. Такие приборы состоят из нескольких элементов, осуществляющих необходимое преобразование измеряемой величины в сигнал того или иного вида или, если необходимо, усиление этого сигнала, чтобы вызвать перемещение подвижного органа отсчетного устройства. Примером может служить электронный вольтметр, предназначенный для измерения высокочастотного напряжения. Входной сигнал подается на детектор, преобразующий переменное напряжение в постоянное, которое после усиления в усилителе постоянного тока подводится к магнитоэлектрическому вольтметру постоянного тока. Здесь постоянное напряжение, в свою очередь, преобразуется в механический момент, поворачивающий подвижную рамку на угол, пропорциональный значению измеряемого напряжения.

Шкала же вольтметра постоянного тока может быть градуирована в амплитудных или средних квадратических (эффективных) значениях переменного напряжения, подводимого ко входу электронного вольтметра.

Характерной особенностью приборов непосредственной оценки является то, что результаты, полученные с их помощью, не требуют сравнения с показаниями эталонных средств измерений.

К таким приборам относится большая часть вольтметров, амперметров, манометров, термометров и др.

В приборах сравнения значение измеряемой величины определяют сравнением с известной величиной, соответствующей воспроизводящей ее мере, например при измерении массы тел на рычажных весах. Для сравнения измеряемой величины с мерой используют компенсационные или мостовые измерительные цепи. В компенсационных вольтметрах измерение напряжения основано на сравнении измеряемой величины с величиной компенсирующего напряжения, задаваемого мерой напряжения (нормальным элементом или другой эталонной мерой напряжения).

На сравнении измеряемой величины с мерой основана работа грузопоршневых и грузопружинных манометров, где сравниваются силовые эффекты, с которыми действуют на поршень измеряемое давление и мера массы. При измерении линейных размеров тел с использованием концевых мер длины часто используют дифференциальный метод сравнения, то есть для измерения разности между измеряемой величиной и мерой применяют дополнительные приборы непосредственной оценки. Если объектами измерения являются параметры элементов, которые не несут в себе энергии (параметры пассивных элементов), то для сравнения измеряемой величины с мерой чаще всего используют мостовые измерительные схемы. В этих схемах пассивные элементы предварительно активизируются путем подведения для питания моста энергии от специальных источников питания. Сравнение же измеряемой величины, включенной в измерительное плечо моста, с известным значением меры, включенной в плечо сравнения, производят, как правило, нулевым методом, то есть уравновешивая мост путем измерения значения меры. Характерной особенностью приборов, основанных на методе сравнения, является то, что погрешность измерения с их помощью определяется в основном погрешностью мер, с которыми сравнивают измеряемые величины. Следовательно, применение мер более высоких классов точности и разрядов обеспечивает повышение точности измерений.

По способу образования показаний приборы подразделяют на показывающие и регистрирующие Показывающие приборы, в свою очередь, подразделяют на аналоговые и цифровые.

Аналоговые приборы — это, как правило, стрелочные приборы с отсчетными устройствами, состоящими из двух элементов — шкалы и указателя, связанного с подвижной частью прибора. Показания таких приборов являются непрерывной функцией измерений измеряемой величины.

Цифровые измерительные приборы автоматически вырабатывают дискретные сигналы измерительной информации, которые предлагают в цифровой форме. Отсчет у них производится с помощью механических или электронных цифровых отсчетных устройств.

Цифровые измерительные приборы по сравнению со стрелочными имеют

ряд достоинств; процесс измерения автоматизирован, что исключает возникновение погрешностей, обусловленных ошибками оператора; время измерения очень мало; результат измерений, выдаваемый в цифровой форме, легко фиксируется цифропечатающим устройством и удобен для ввода в электронно-вычислительную машину.

Цифровые измерительные приборы широко применяют для измерения электрических напряжений, частоты колебаний, параметров электрических и радиотехнических цепей и многих других физических величин. В последние годы они все чаще заменяют стрелочные приборы.

Регистрирующие измерительные приборы подразделяют на самопишущие (например, барографы, термографы, шлейфовые осциллографы), выдающие показания в форме диаграммы, и печатающие, которые выдают результат измерений в цифровой форме на бумажной ленте. Регистрирующие приборы находят широкое применение при измерении физических величин — параметров процессов или свойств объектов в динамических режимах, когда непрерывно изменяются те или иные условия измерения (температура, давление и т.п.).

Измерительный преобразователь — средство измерений, служащее для выработки измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем.

Преобразуемая физическая величина называется входной, а результат преобразования — выходной величиной. Связь между выходной и входной величинами преобразователя устанавливается функцией преобразования.

Измерительные преобразователи являются составной частью измерительных приборов, различных измерительных систем, системы автоматического контроля или регулирования тех или иных процессов.

Основное требование к измерительным преобразователям — точная передача информации, то есть минимальные потери информации, иначе говоря, минимальные погрешности. Измерительное преобразование — это отражение размера одной физической величины размером другой физической величины, функционально с ней связанной. На принципе измерительного преобразования построены практически все средства измерений, так как любое средство измерений использует те или иные функциональные связи между входной и выходной величинами. Например, в приборах для электрических измерений неэлектрических величин или для измерения геометрических величин, таких как микрометр, когда измеряемая длина отсчитывается по углу поворота микрометрического барабана, или штангенциркуль, когда вместо расстояния между губками штангенциркуля отсчитывается соответствующее расстояние по его шкале. Понятие «измерительный преобразователь» более конкретно, чем «измерительное преобразование», так как одно и то же измерительное преобразование может быть выполнено рядом различных по принципу действия измерительных преобразователей. Например, измерительное преобразование температуры в механическое перемещение может быть выполнено ртутным термометром или биметаллическим элементом либо термопарой, преобразующей температуру в ЭДС, а ЭДС в перемещение указателя.

Измерительный преобразователь, к которому подведена измеряемая величина, называется первичным преобразователем, например термопара в термоэлектрическом термометре.

Измерительный преобразователь, предназначенный для изменения величины в заданное число раз, называется масштабным, например делители напряжений на входе вольтметров или электронных осциллографов, а также измерительные усилители.

Измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации, называется передающим, например индуктивный и пневматические передающие преобразователи.

Вспомогательным является средство измерений величин, влияющих на метрологические свойства другого средства измерения при его применении или поверке. Например, точность измерения объемного расхода газа или линейных размеров тел зависит от температуры, измеряемой термометром, который и является вспомогательным средством измерений.

Измерительная установка — это совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенных для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенных в одном месте.

Создание измерительных установок, называемых также измерительными стендами, позволяет наиболее рационально расположить все требуемые средства измерений и соединить их с объектами измерений для обеспечения наиболее высокой производительности труда на данном рабочем месте (например, на рабочих местах операторов в конкретных условиях производства или поверочных лаборатории). Так создаются измерительные установки (стенды), например, для контроля работоспособности тех или иных технических устройств, для поверки различных средств измерений и т. п.

Измерительные системы предназначены для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и использования в автоматических системах управления. Их главная цель — автоматизация процесса измерения и использования результатов измерения для автоматического управления различными процессами производства. В состав таких систем могут входить преобразователи одних величин в другие, схемы автоматического регулирования, меры и измерительные приборы. В случае если различные элементы системы разнесены на значительные расстояния друг от друга, связь между ними осуществляется как по проводным, так и проводными каналам.

Про анемометры:  Не морская вода, как пишется Орфография not с прилагательными в o e
Оцените статью
Анемометры
Добавить комментарий