ГЕО-НДТ: Оборудование, приборы неразрушающего и разрушающего контроля, геодезические приборы, приборы для энергоаудита, измерительные приборы, лаборатории.

ГЕО-НДТ: Оборудование, приборы неразрушающего и разрушающего контроля, геодезические приборы, приборы для энергоаудита, измерительные приборы, лаборатории. Анемометр

Основные технические характеристики

Пpеделы измеpения концентpации кислорода, % об.0,1 – 23
Диапазон измерения по аналоговому выходу, % об.0,1–5 / 0,1–10 / 0,1–15
Погрешность измерения, %± 2,0
Наименьшая цена разряда цифрового индикатора, %0,01
Время установления рабочего режима (прогрева), мин30
Временя установления выходного сигнала, с30
Режим работынепрерывный
Расход анализируемого газа через газоанализатор, л/ч30–100
Диапазон рабочих температур чувствительного элемента датчика кислорода, °С600…800
Аналоговый выход (при сопротивлении нагрузки не более 200 Ом), мА4-20 (0-20) или 0-5
Интерфейс связи с ЭВМRS-485
Напряжение питания (переменный ток), В36
Потребляемая мощность, ВA100
Параметры окружающей средытемпература, °С-10… 50
атмосферное давление, кПа 84… 107
относительная влажность при 35 °С, %до 90
вибрация группа по ГОСТ 12997V2
Характеристика анализируемого газатемпература, °Сдо 750
влажность при 35 °С, %до 90
избыточное давление, кПа-3,9 … 4,4
пылесодержание, мг/м3до 10,0
Общая длина прибора, мм585
Длина погружной части датчика, мм260
Диаметр погружной части датчика, мм57
Длины присоединительных кабелей от газоанализатора до вторичного прибора, мне более 300
Масса прибора, кг4,0

Описание изобретения к патенту

Изобретение относится к области газового анализа, а точнее к области анализа дымовых газов котлоагрегатов и дымоходов тепловых электростанций и других установок, в которых имеет место сжигание газообразного, жидкого и твердого топлива.

В настоящее время в отечественной и зарубежной аналитической практике для измерений концентраций кислорода в дымовых газах используются преимущественно датчики, основанные на потенциометрическом способе измерений с применением электрохимической концентрационной ячейки с твердым кислородионным электролитом на основе диоксида циркония.

Одним из аналогов является датчик газоанализатора АГЭ-1 [1] В этом датчике в качестве чувствительного элемента применена твердоэлектролитная пробирка с электродами из оксидного полупроводникового материала. В качестве сравнительной среды используется воздух, протекающий через сравнительную камеру твердоэлектролитной ячейки благодаря температурной конвекции.

Датчик имеет следующие недостатки. Невысокую точность измерений вследствие наличия погрешностей, возникающих из-за непостоянства концентрации кислорода в окружающем воздухе и ввиду отличия давления сравнительной среды от давления анализируемой среды.

Датчик обладает низким быстродействием из-за применения оксидных электродов. Кроме того, низка эксплуатационная надежность датчика, в особенности, в дымовых газах пыле-угольных котлоагрегатов, что вызвано наличием в датчике открытой нагревательной спирали.

Из датчиков кислорода наиболее близким по технической сущности является датчик газоанализатора ГКТ-1 АН [2] Этот датчик содержит твердоэлектролитный элемент с рабочим и сравнительным электродами, к которым подсоединен измеритель ЭДС. Чувствительный элемент в нем выполнен в виде таблетки, герметично заключенной в металлическую трубку.

Датчик имеет приспособления для подачи к сравнительному электроду сравнительной среды атмосферного воздуха. Чувствительный элемент своим рабочим электродом контактирует с анализируемой средой, а сравнительный электрод герметично отделен от анализируемой среды.

Датчик имеет следующие недостатки. Во-первых, невысокую точность измерений в связи с наличием погрешностей, вызванных использованием атмосферного воздуха в качестве сравнительной среды, из-за непостоянства концентрации кислорода в воздухе и отличия общего давления дымовых газов, которые, как известно, находятся под разрежением относительно атмосферного давления.

Во -вторых, по принципу действия необходима герметизация чувствительного элемента, которая производится соединением разнородных материалов: твердого электролита, представляющего собой керамическое тело, и металла. В условиях высокой температуры и химической агрессивности дымовых газов такое соединение недостаточно надежно.

Предлагаемое изобретение направлено на повышение точности измерений. Благодаря применению изобретения примерно в 2 раза может быть уменьшена погрешность измерений. Кроме того, упрощается конструкция датчика и появляется возможность использовать атмосферный воздух для проверки его работоспособности.

Сущность изобретения. Датчик имеет следующие общие и наиболее близким аналогом существенные признаки: содержит чувствительный элемент, выполненный в виде твердоэлектролитной потенциометрической ячейки с рабочим и сравнительным электродами, к которым подключен измеритель ЭДС.

Отличительными существенными признаками изобретения являются: чувствительный элемент содержит дополнительную твердоэлектролитную ячейку, герметично соединенную с потенциометрической твердоэлектролитной ячейкой диэлектрическим составом; рабочий электрод потенциометрической ячейки и один из электродом дополнительной ячейки расположены в анализируемой среде, а сравнительный электрод потенциометрической ячейки и второй электрод дополнительной ячейки расположены во внутренней камере, общей для обеих ячеек и соединенной с анализируемой средой капилляром длиной от 1 до 10 см и внутренним диаметром от 0,1 до 1,5 мм; электроды дополнительной ячейки соединены с источником тока в полярности: плюс источника приложен к внутреннему электроду, а через ячейку пропускается постоянный ток в пределах от 10 до 100 мА.

Предлагаемое устройство схематично изображено на чертеже. Устройство включает твердоэлектролитную ячейку 1 с рабочим электродом 2 и сравнительным электродом 3. Ячейка 1 герметично, через диэлектрический состав 4, соединена с дополнительной твердоэлектролитной ячейкой 5 с электродами 6 и 7.

Рабочий электрод 2 потенциометрической ячейки 1 и электрод 6 дополнительной ячейки 5 расположены в анализируемой среде. Потенциометрическая и дополнительная ячейки соединены так, что их внутренние пространства образуют общую внутреннюю камеру 15, в которой расположены сравнительный электрод 3 потенциометрической ячейки и второй электрод 7 дополнительной ячейки.

Про анемометры:  Течеискатель testo 316-EX - купить | цена 66038 рублей

С помощью токоотводов 9 потенциометрическая ячейка подключена к измерителю ЭДС 10, а дополнительная ячейка к источнику стабилизированного тока 11. На чертеже показаны также фильтр 12, электронагреватель 13 и стенка 14 дымохода или котлоагрегата.

Рассмотрим функционирование датчика в режиме измерений концентрации кислорода в дымовых газах.

В режиме измерений чувствительный элемент находится в анализируемый среде, поступающей через фильтр 12 и омывающей рабочий электрод 2 потенциометрической ячейки и наружный электрод 6 дополнительный твердоэлектролитной ячейки.

Под действием напряжения от источника тока 11 через дополнительную твердоэлектролитную ячейку протекает ток, который переносится вследствие чисто кислородной проводимости твердого электролита, исключительно ионами кислорода. Ионы кислорода разряжаются на внутреннем электроде 7, образуют молекулы кислорода, которые выделяются в газовую фазу внутреннего пространства чувствительного элемента.

Капилляр 8 затрудняет поступление анализируемого газа во внутреннее пространство чувствительного элемента. Подбором капилляра (по длине и диаметру) и выбором тока через дополнительную твердоэлектролитную ячейку достигаются условия, при которых внутреннее пространство чувствительного элемента заполняется практически чистым кислородом при давлении, близком к давлению анализируемой среды.

Чистый кислород омывает сравнительный электрод потенциометрической ячейки и на нем возникает потенциал, пропорциональный парциальному давлению кислорода в сравнительной среде. Рабочий электрод, омываемый анализируемым газом, имеет потенциал, пропорциональный парциальному давлению кислорода в этом газе. Разность потенциалов (ЭДС) потенциометрической ячейки, в соответствии с формулой Нернста, равна:

датчик кислорода дымовых газов, патент № 2099697

где E- ЭДС потенциометрической твердоэлетролитной ячейки;

R газовая постоянная;

F- число Фарадея;

4 число зарядов в ионизированной молекуле кислорода;

Т температура ячейки;

2

и P

1

соответственно, парциальные давления кислорода в анализируемой и сравнительных средах.

Парциальное давление компонента равно произведению его мольной доли (объемной концентрации) на общее давление, т.е.

11датчик кислорода дымовых газов, патент № 2099697ср22датчик кислорода дымовых газов, патент № 2099697ан

где C

1

и C

2

соответственно, объемные концентрации кислорода в сравнительной и анализируемой средах;

ср

и P

ан

соответственно, общие давления в сравнительной и анализируемой средах.

Из уравнений (1), (2) и (3) следует:

датчик кислорода дымовых газов, патент № 2099697

Учитывая, что в чувствительном элементе созданы условия, когда P

ср.датчик кислорода дымовых газов, патент № 2099697ан.

, без большой погрешности можно записать:

датчик кислорода дымовых газов, патент № 2099697

Из уравнения (5), с учетом, что C

1

=100% следует:

датчик кислорода дымовых газов, патент № 2099697

Уравнение (6) является аналитической градуировочной характеристикой заявляемого датчика. Как видно, при постоянной температуре ячейки, ЭДС ячейки зависит только от концентрации кислорода в анализируемой среде.

Достоинствами предлагаемого датчика являются, во-первых, то, что он имеет большую точность измерений, так как концентрация кислорода в сравнительной среде постоянна и практически отсутствует разность общих давлений анализируемой и сравнительной сред.

Во-вторых, чувствительный элемент не требует герметизации, так как он полностью погружен в анализируемую среду.

В третьих, в качестве тест-газа для проверки работоспособности датчика может быть использован атмосферный воздух, что, понятно, дешевле, чем использование поверочных газовых смесей.

Существенные признаки изобретения сформулированы на основе теоретического и экспериментального исследования предлагаемого устройства.

Рассмотрим подробнее признаки, которые, на наш взгляд, требуют дополнительных пояснений.

Первое. Дополнительная твердоэлектролитная ячейка соединена с потенциометрической твердоэлектролитной ячейкой диэлектрическим составом. Необходимость диэлектрического состава, не проводящего электрических ток, вызвана тем, что при электрическом контакте через твердый электролит подача напряжения на электроды дополнительной ячейки вызывает искажение показаний потенциометрической ячейки.

Второе. Необходимость соединения внутреннего пространства ячеек с анализируемой средой через капилляр, играющего роль пневматического сопротивления, связана со следующими обстоятельствами. При отсутствии капилляра анализируемый газ беспрепятственно (за счет диффузии) проникает во внутреннее пространство ячеек и изменяет состав сравнительной среды.

С учетом указанных факторов после экспериментальной проверки для капилляра выбрана длина в пределах от 1 до 10 см и диаметр от 0,1 до 1,5 мм. Чем меньше длина капилляра, тем меньше должен быть и его диаметр.

Третье. Выбор тока через дополнительную ячейку осуществляется экспериментально. При малом сопротивлении капилляра нужны большие токи, увеличение сопротивления капилляра требует снижения тока. Причем, ток должен иметь постоянную величину, в противном случае имеют место, хотя и небольшие, колебания ЭДС потенциометрической ячейки.

Выше в описании изобретения указано, что в электрическую цепь: источник тока- электроды дополнительной твердоэлектролитной ячейки включены переключатель полярности источника тока и измеритель тока, а напряжение подается в полярности: плюс к наружному электроду этой ячейки и не превышает 0,8 B.

Основное назначение этой части изобретения заключается в проверке правильности работы потенциометрической твердоэлектролитной ячейки. Для осуществления этого поступают следующим образом. При работе всего устройства измеряют содержание кислорода

датчик кислорода дымовых газов, патент № 2099697

затем переключают полярность тока на дополнительной ячейке и выжидают установления тока, по которому судят о концентрации кислорода в той же анализируемой смеси

датчик кислорода дымовых газов, патент № 2099697

Сравнивая значения концентраций кислорода

датчик кислорода дымовых газов, патент № 2099697

судят о правильности работы устройства.

Определение концентрации кислорода происходит так. Под действием напряжения от источника постоянного тока кислорода в виде ионов переносится через твердый электролит от внутреннего электрода дополнительной твердоэлектролитной ячейки к ее внешнему электроду, рекомбинирует в молекулы и выделяется в анализируемый газ.

Таким образом кислород извлекается из внутренней камеры. Постепенно во внутренней камере содержание кислорода уменьшается, а содержание инертных примесей возрастает. Со временем (через 3-5 мин) устанавливается стационарное состояние, при котором количество кислорода, поступающее через капилляр, становится равным количеству кислорода, переносимому через твердый электролит.

Про анемометры:  Расходомеры жидкости: типы, характеристики, карта подбора

Этому состоянию соответствует стационарный ток, численное значение которого при постоянной температуре и размерах капилляра зависит практически только от концентрации кислорода в анализируемом газе. По установившемуся значению тока судят о концентрации кислорода в анализируемом газе.

Относительно обоснования условий работы изобретения.

Первое. “. в электрическую цепь электроды дополнительной твердоэлектролитной ячейки включены переключатель полярности источника тока и измеритель тока, а напряжение подается в полярности: плюс к наружному электроду ячейки.”. Включение переключателя полярности необходимо для изменения направления перекачки кислорода.

При работе устройства кислород накачивается во внутреннюю камеру для создания сравнительной среды чистого кислорода, при работе же устройства кислород выкачивается из внутренней камеры, что требует изменения полярности приложенного напряжения и, соответственно, изменения полярности тока, переносящего ионы кислорода через твердый электролит.

Второе. Условие “напряжение. не превышает 0,8 B” необходимо, так как проведенные нами исследования показали, что при приложении более высокого напряжения происходит не только извлечение кислорода, но и разложение кислородсодержащих соединений: воды и углекислого газа, содержащихся в анализируемой среде, что приводит к существенной ошибке в измерениях концентрацией кислорода.

Рассмотрим конкретный пример реализации изобретения.

Один из вариантов кислородного датчика по предлагаемому изобретению, испытанных нами, схематично изображен на чертеже. В этом варианте потенциометрическая ячейка совмещена с капилляром, который также сделан из твердого электролита. В качестве твердого электролита используется керамика состава ZrO

2

0,1Y

23

. Размеры капилляра: длина 70 мм, внутренний диаметр 1 мм. Размеры пробирки, из которой выполнена дополнительная ячейка: длина

датчик кислорода дымовых газов, патент № 2099697

10 мм, диаметр

датчик кислорода дымовых газов, патент № 2099697

3,5 мм.

Все электроды выполнены из мелкодисперсной платины, а токоотводы из платиновой проволоки. Ток, протекающий через дополнительную ячейку в режиме измерений, составляет 30 мА. Рабочая температура (в зоне электродов потенциометрической ячейки) поддерживается на уровне (700

датчик кислорода дымовых газов, патент № 2099697o

C. Повышение температуры, например, до 836

o

C требует повышения тока до 50 мА.

Кислородный датчик прошел промышленные испытания в течение 3-х месяцев на одной из ТЭЦ, где топливом служит угольная пыль. Испытания показали пригодность датчика для измерения концентраций кислорода в дымовых газах. Кроме того, датчик значительно превосходит по точности и быстродействию применяемый в настоящее время магнитный газоанализатор МН 5106 М.

Выбор места установки

Параметры окружающей среды и места установки должны быть оговорены со специалистами до поставки прибора FGA 311. Прибор должен быть установлен в стенку печи или котла, либо в дымоход. В идеальном случае, конец зонда должен быть введен примерно на30,5 смв поток газа. Кроме того, направление потока газа должно быть перпендикулярно к закрытой стороне защитного экрана.

Печи:

Анализатор необходимо располагать вблизи зоны горения, обычно в пределах радиационной секции и всегда до секции конвекции. При этом убедитесь в том, что максимальная рабочая температура зонда не превышена, а газовая смесь однородна.

Котлы:

Анализатор должен быть расположен за главным нагревателем (если в системе имеется экономайзер, то анализатор, обычно, размещают перед ним). При этом анализатор нельзя устанавливать за любым воздушным нагревателем, где могут быть утечки воздуха, которые приведут к неточности в показаниях прибора.

В общем случае, точка измерения должна быть в зоне высокой турбулентности, которая гарантирует хорошее перемешивание и однородность состава дымовых газов. Условия установки должны исключить протечки воздуха выше по течению от точки измерения и мертвые зоны вблизи точки измерения.

*Технические характеристики и комплект поставки оборудования могут быть изменены производителем без предварительного уведомления.

Дополнительную информацию по газоанализаторам можно получить, обратившись к нашим специалистам, по телефонам, указанным в разделе “контакты”.

Доставляем оборудование для анализа газов по всей России курьерскими службами и транспортными компаниями.

Газоанализаторы дымовых газов | radiodetection | продажа трассопоискового оборудования rd | официальный представитель radiodetection в россии

(Журнал «Энергетик» №4/2007)

А.В. Аксенов, руководитель отдела КИП и В.Р. Козлов, руководитель отдела НТИ, компания Пергам

ГЕО-НДТ: Оборудование, приборы неразрушающего и разрушающего контроля, геодезические приборы, приборы для энергоаудита, измерительные приборы, лаборатории.Актуальность контроля процессов горения в различных печах, котлах и технологических аппаратах не вызывает сомненияВ процессе горения необходимо поддерживать точное соотношение между поступающими количествами воздуха и топлива – в соответствии со стехиометрическим уравнением реакции горения. При старении оборудования смешивание выполняется недостаточно точно, со временем изменяются теплотворная способность топлива, скорость процесса горения и внешние условия. Любой из этих факторов влияет на количество воздуха, необходимое для безопасного и эффективного сгорания топлива.

Слишком большое количество воздуха приводит к недожегу и несгоревшее топливо выбрасывается в дымовую трубу, снижая экономичность процесса и повышая потенциальную опасность взрыва. При недостаточном количестве в трубу уходит значительная доля тепла. Кроме того, при неполном сгорании топлива возрастает загрязнение атмосферы. При большом избытке воздуха увеличивается содержание оксидов SO2 и NOх. Поддержание точного соотношения «воздух/топливо» в любых процессах горения сводит к минимуму выбросы в атмосферу загрязняющих веществ.

Для корректного определения концентрации O2 датчики таких приборов должны располагаться как можно ближе к зоне горения и, безусловно – перед теплообменниками, чтобы свести к минимуму отрицательное влияние утечек воздуха на показатели избытка O2. Газоанализаторы кислорода работают в дымовых газах в области высоких температур и уровней загрязнения, поэтому их конструкции должны быть устойчивы к закупориванию твердыми частицами, которые могут вызывать преждевременные отказы датчиков. Как правило, известные анализаторы O2 надолго выходят из строя, а их регламентное обслуживание отнимает много сил и времени. Конструкция многих традиционных анализаторов O2 в дымовых газах оказывается ненадежной и несоответствующей жестким условиям непрерывной эксплуатации данных приборов.

Про анемометры:  Как добыть питьевую воду

Преодолеть указанные ограничения помогут новейшие стационарные газоанализаторы кислорода OxyTrak 411 компании GE Panametrics. Объединив самые современные технологии измерения с уникальным датчиком кислорода, газоанализаторы OxyTrak 411 позволяют избежать утомительную процедуру калибровки датчика и необходимость использования дорогих поверочных газовых смесей.

В датчике OxyTrak 411 используется Запатентованный чувствительный элемент из оксида циркония с внутренней герметизированной образцовой камерой для точного определения содержания O2 в дымовых газах и для обеспечения быстрого отклика датчика OxyTrak 411 на изменения в технологическом процессе. Эта новая уникальная конструкция чувствительного элемента является «самокалибрующейся». Внутренняя электрическая калибровка датчика выполняется автоматически, исключая необходимость использования поверочных газовых смесей.

При измерениях осуществляется откачка O2 из герметизированной образцовой камеры датчика для установки точки отсчета и последующего измерения электрического заряда в равновесном состоянии – содержание ионов кислорода в камере равно парциальному давлению кислорода в дымовых газах. Измеренное количество электричества прямо пропорционально концентрации кислорода.

ГЕО-НДТ: Оборудование, приборы неразрушающего и разрушающего контроля, геодезические приборы, приборы для энергоаудита, измерительные приборы, лаборатории.Таким образом, внутренняя герметизированная образцовая камера датчика исключает необходимость применения эталонного газа. Ручной контроль калибровки может быть осуществлен с помощью соответствующего штуцера прибора и одношаговой процедуры, используя только один газ. Это может быть воздух или какой-либо другой газ.

Газоанализатор OxyTrak 411 имеет модульную конструкцию, которая обеспечивает удобство обслуживания и ремонта. Отдельное отверстие обеспечивает простой доступ к датчику. Прибор работает в диапазоне температур дымовых газов от 150 до 650 ?С.

Абсолютная погрешность газоанализатора составляет ±0,1 % О2, диапазон измерения 0 – 25 % О2. По выбору пользователя OxyTrak 411 обеспечивает линеаризованный, изолированный выход 0/4 – 20 мА (связь со вторичным прибором по токовой петле) или 0 2 В, программируемый в рабочих условиях для любых измерений в пределах от 0 до 25 % О2 (например, от 0 до 5 % О2), либо цифровой выход RS485 или RS232, а также ИК-связь через защищенную стеклом клавиатуру для зон классификации Zone 1/Division 1. Кроме того, OxyTrak 411 имеет выход на сигнализацию с отказоустойчивым режимом работы и функцию встроенной диагностики. Прибор имеет взрывозащищенное исполнение 1ExdIICT6/T3 и допущен к применению на поднадзорных производствах и объектах.

Статьи по теме:

← Вернуться к списку статей

Газоанализаторы кислорода (o2). стационарные,персональные (переносные), датчики кислорода.купить, цена

Газоанализаторы, сигнализаторы, датчики кислорода O2

Кислоро́д (лат. Oxygenium), химический элемент VI группы периодической системы. В свободном виде встречается в виде двух модификаций — О2 («обычный» кислород) и О3 (озон). О2 — газ без цвета и запаха, плотность 1,42897 г/л, tпл –218,6ºC, tкип –182,96ºC. Химически самый активный (после фтора) неметалл. С большинством других элементов (водородом, галогенами, серой, многими металлами и т. д.) взаимодействует непосредственно (окисление) и, как правило, с выделением энергии. При повышении температуры скорость окисления возрастает и может начаться горение.

Допустимые пределы концентрации кислорода в атмосфере базируются на многолетних научных исследованиях, и вытекают из двух основополагающих факторов – наличию непосредственной угрозы жизни или здоровью человека, и возможности принятия оперативных мер для устранения этой угрозы. Поэтому в современных приборах газового контроля существуют два порога срабатывания сигнализации – предупреждающий и аварийный.

Область применения

Теплоэнергетика, металлургия, нефтехимия, производство строительных материалов, коммунально-бытовой сектор и другие отрасли, где используются топливосжигающие агрегаты, работающие на различных видах топлива.

Принцип действия

Принцип действия газоанализатора основан на измерении ЭДС твердо-электролитной ячейки, возникающей вследствие различия парциальных давлений кислорода в анализируемой газовой смеси (дымовых газах) и сравнительной газовой смеси (атмосферный воздух). В качестве чувствительного элемента используется пробирка из диоксида циркония (ZrO2), легированная оксидом иттрия (Y203), или диоксидом кальция (СаО2).

Условия эксплуатации

Анализатоp пpост и надежен в эксплуатации и pемонте, не тpебует специальной подготовки пеpсонала, не нуждается в пpобоотбоpе и пpобоподготовке. Установливается как на газоходе, так и на шунтовой трубе. В приборе предусмотрены автоматическая диагностика основных узлов, автоматическая и ручная калибровка. Для диагностики состояния и управления режимами работы используется переносной пульт управления анализатором.

Формула изобретения

Датчик кислорода дымовых газов, содержащий чувствительный элемент в виде твердоэлектролитной потенциометрической ячейки с рабочим электродом, расположенным в анализируемой среде, и сравнительным электродом, к которым подключен измеритель ЭДС, отличающийся тем, что датчик содержит дополнительную твердоэлектролитную ячейку, герметично соединенную с потенциометрической твердоэлектролитной ячейкой диэлектрическим составом, причем один из электродов дополнительной ячейки расположен в анализируемой среде, а сравнительный электрод потенциометрической ячейки и второй электрод дополнительной ячейки во внутренней камере, общей для обеих ячеек и соединенной с анализируемой средой капилляром длиной 1 10 см и внутренним диаметром 0,1 1,5 мм, при этом электроды дополнительной ячейки соединены с источником постоянного тока в полярности: “плюс” источника приложен к внутреннему электроду.

Оцените статью
Анемометры
Добавить комментарий