Глава 3. Клиническая эффективность метода ультразвуковой диагностики

Глава 3. Клиническая эффективность метода ультразвуковой диагностики Анемометр

Для получения ультразвука используют

– обратный пьезоэлектрический эффект;

– магнитострикцию; слайд №2

Обратный пьезоэлектрический эффект состоит в том, что пластинка, вырезанная определенным образом из кристалла кварца (или другого анизотропного кристалла), под действием электрического поля сжимается или удлиняется в зависимости от направления поля. Если поместить такую пластинку между обкладками плоского конденсатора, на которые подается переменное напряжение, то пластинка придет в вынужденные колебания. Колебания пластинки передаются частицам окружающей среды (воздуха или жидкости), что и порождает ультразвуковую волну.

Явление магнитострикции состоит в том, что ферромагнитные стержни (сталь, железо, никель и их сплавы) изменяют линейные размеры под действием магнитного поля, направленного по оси стержня. Поместив такой стержень в переменное магнитное поле (например, внутрь катушки, по которой течет переменный ток), мы вызовем в стержне вынужденные колебания, амплитуда которых будет особенно велика при резонансе. Колеблющийся торец стержня создает в окружающей среде ультразвуковые волны, интенсивность которых находится в прямой зависимости от амплитуды колебаний торца.

Некоторые материалы (например, керамики) способны изменять свои размеры в электрическом поле. Это явление, получившее названиеэлектрострикции, внешне отличается от обратного пьезоэлектрического эффекта тем, что изменение размеров зависит только от напряженности приложенного поля, но не зависит от его знака. К числу подобных материалов относятся титанат бария и титанат-цирконат свинца.

Преобразователи, в которых используют описанные выше явления, называют соответственно пьезоэлектрическими, магнитострикционными и электрострикционными.

Излучатели ультразвука. Электромеханический УЗ-излучатель использует явление обратного пьезоэлектрического эффекта и состоит из следующих элементов (рис.1)

1- пластины из вещества с пьезоэлектрическими свойствами;

2- электродов, нанесенных на ее поверхности в виде проводящих слоев;

3- генератора, подающего на электроды переменное напряжение требуемой частоты.

При подаче на электроды (2) переменного напряжения от генератора (3) пластина (1) испытывает периодические растяжения и сжатия. Возникают вынужденные колебания, частота которых равна частоте изменения напряжения. Эти колебания передаются частицам окружающей среды, создавая механическую волну с соответствующей частотой. Амплитуда колебаний частиц среды вблизи излучателя равна амплитуде колебаний пластины.

К особенностям ультразвука относится возможность получения волн большой интенсивности даже при сравнительно небольших амплитудах колебаний, так как при данной амплитуде плотность потока энергии пропорциональна квадрату частоты.

I = ρ ω2 ʋ А2 / 2 (1)

Предельная интенсивность излучения ультразвука определяется свойствами материала излучателей, а также особенностями условий их использования.

Диапазон интенсивности при генерации УЗ в области УСЧ чрезвычайно широк: от 10 -14 Вт/см 2 до 0,1 Вт/см 2 .

Для многих целей необходимы значительно большие интенсивности, чем те которые могут быть получены с поверхности излучателя. В этих случаях можно воспользоваться фокусировкой.

Приемники ультразвука. Электромеханические УЗ-приемники (рис.2) используют явление прямого пьезоэлектрического эффекта.

В этом случае под действием УЗ волны возникают колебания кристаллической пластины (1), в результате которых на электродах (2) возникает переменное напряжение, которое фиксируется регистрирующей системой (3).

В большинстве медицинских приборов генератор ультразвуковых волн одновременно используется и как их приемник.

Рассмотрим свойства ультразвука, обуславливающие его широкое диагностическое и лечебное применение.

По физической сущности УЗ не отличается от звука и представляет собой механическую волну. При ее распространении образуются чередующиеся участки сгущения и разряжения частиц среды. Скорость распространения УЗ и звука в средах одинаковы: в воздухе – 330м/с, в жидкости – 1500 м/с. Однако существуют особенности.

а) Малая длина волны. Направленность. Длина волны УЗ существенно меньше длины звуковой волны. Учитывая, что длина волны λ=υ/ν, найдем: для звука с частотой 1 кГц длина волны λзв=1500/1000=1,5 м; для ультразвука с частотой 1 МГц длина волны λуз=1500/1 000 000=1.5 мм.

Благодаря малой длине волны отражение и дифракция УЗ происходит на объектах меньших размеров, чем для слышимого звука. Например, тело размером 10 см не будет препятствием для звуковой волны с λ=1,5 м, но станет преградой для УЗ волны с λ=1,5 мм. При этом возникает УЗ тень, поэтому в некоторых случаях распространение УЗ волн можно изображать с помощью лучей и применять к ним законы отражения и преломления. То есть при определенных условиях УЗ волна распространяется направленным потоком, к которому применимы законы геометрической оптики.

б) Преломление и отражение. Как и всем видам волн, ультразвуку присущи явления отражения и преломления. Законы, которым подчиняются эти явления полностью аналогичны законам отражения и преломления света. Поэтому во многих случаях распространение УЗ волн изображают с помощью лучей.

Для количественной характеристики процесса вводят понятие коэффициента отражения R=Iотр /I о, где Iотр – интенсивность отраженной ультразвуковой волны; I о – интенсивность падающей. Это безразмерная величина, меняющаяся в интервале от нуля (отсутствие отражения) до единицы (полное отражение).

В случае, представленном на рис.3 (нормальное падение волны на границу раздела), этот коэффициент может быть найден по формуле:

где ρ1 и ρ2 – плотности первой и второй среды соответственно; υ1 и υ2 -скорости ультразвука в этих средах.

Видно, что чем сильнее различаются волновые сопротивления (ρυ) сред, тем больше доля отраженной энергии и меньше доля энергии, переходящей через границу раздела.

Волновое сопротивление биологических сред примерно в 3000 раз больше волнового сопротивления воздуха (R=1/3000), поэтому отражение на границе воздух-кожа составляет 99,99%. Если излучатель приложить непосредственно к коже человека, то УЗ не проникнет внутрь, а будет отражаться от тонкого слоя воздуха между излучателем и кожей. Чтобы исключить воздушный слой, поверхность кожи покрывают слоем соответствующей смазки (водным желе), которая играет роль переходной среды, уменьшающей отражение.

Про анемометры:  Датчики ВАЗ 2114, 2115 8 клапанов инжектор: виды датчиков, расположение, предназначение

Смазка должна удовлетворять соответствующим требованиям: иметь акустическое сопротивление, близкое к акустическому сопротивлению кожи, обладать малым коэффициентом поглощения УЗ, иметь значительную вязкость, хорошо смачивать кожу, быть нетоксичной (вазелиновое масло, глицерин и др.).

в) Поглощение, глубина полупоглощения. Следующим важным свойством ультразвука является его поглощение в средах: энергия механических колебаний частиц среды превращается в энергию их теплового движения. Поглощаемая при этом средой энергия механической волны обуславливает нагревание среды. Этот эффект описывается формулой:

I = Iо. е-кl (3)

где Io – интенсивность ультразвуковой волны, прошедшей расстояние l в среде; Io- начальная интенсивность; к – коэффициент поглощения ультразвука в среде; е – основание натуральных логарифмов (е = 2,71).

Рис.4. Поглощение ультразвука в двух средах: коэффициент поглощения во второй среде больше, чем в первой.

Наряду с коэффициентом поглощения, в качестве характеристики поглощения УЗ используют и глубину полупоглощения.

Глубина полупоглощения – это глубина, на которой интенсивность УЗ-волны уменьшается вдвое.

Глубина полупоглощения для различных тканей имеет различное значение. Поэтому в медицинских целях используют УЗ волны различных интенсивностей: малая – 1,5 Вт/м2, средняя – (1,5-3) Вт/м2 и большая –(3-10)Вт/м2.

Видно, что поглощение в жидкой среде значительно меньше, чем в мягких тканях и тем более в костной ткани.

Важнейшими физическими характеристиками ультразвука, наиболее часто учитываемыми при его использовании, считаются следующие:

– частота, указывающая на число полных колебаний частиц среды в единицу времени и выражающаяся обычно в килогерцах (кГц); аппараты ультразвуковой терапии сегодня работают в основном на фиксированных частотах (880 кГц, 2640 кГц и др.);

– сила (или интенсивность) ультразвука, под которой понимают энергию, проходящую за 1 с через площадь в 1 см2 ; чаще в медицине ее выражают в Вт/см2 (1 Вт/см2 = 1эрг/ (с ∙ см2 ); с лечебной целью применяют ультразвук интенсивностью от 0.05 до 1,0-1,2 Вт/см2 ;

– амплитуда смещения (амплитуда ультразвуковой волны), которая указывает на максимальное отклонение частиц среды от положения равновесия: чем она больше, тем более значительные изменения возникают в тканях;

– скважность, которая является отношением периода следования импульсов (в отечественных аппаратах он равен 20 мс) к длительности импульса (в отечественных аппаратах она равна 2,4 и 10 мс, а следовательно, скважность равна соответственно 10,5 и 2); чем выше скважность, тем меньше нагрузка на организм больного.

Ультразвуковой передатчик и приемник

Большинство ультразвуковых передатчиков и приемников построены на базе таймера IC 555 или дополнительных металлоксидно-полупроводниковых (CMOS) устройств. Эти устройства представляют собой предварительно управляемые переменные генераторы. Предустановленное значение рабочей частоты может сместиться из-за механических колебаний или колебаний температуры. Этот сдвиг частоты влияет на дальность передачи от ультразвукового преобразователя. Описанные здесь схемы ультразвукового передатчика и приемника используют ИС десятилетнего счетчика CD4017 .

Схема ультразвукового передатчика

Схема передатчика (рис. 1) построена вокруг двух десятилетних ИС счетчиков CD4017 (IC1 и IC2), триггера ИС D-типа CD4013 (IC3) и нескольких дискретных компонентов. Устройство генерирует стабильные сигналы 40 кГц, которые передаются от преобразователя TX.

Глава 3. Клиническая эффективность метода ультразвуковой диагностики

Рис.1: Схема ультразвукового передатчика Кристаллический радиочастотный (РЧ) генератор, построенный вокруг транзистора T 1 (BC549), генерирует сигнал 8 МГц, который служит входом для счетчика первого десятилетия, построенного вокруг IC1. Счетчик декад делит частоту генератора на 800 кГц. Выходной сигнал IC1 подается на второй десятилетний счетчик CD4017 (IC2), который дополнительно делит частоту до 80 кГц. Триггер (IC3) делит сигнал 80 кГц на 2, чтобы получить сигнал 40 кГц, который передается ультразвуковым преобразователем TX. Катушка L изготовлена ​​из эмалированной медной проволоки 36SWG, которая намотана 15 раз вокруг пластикового формирователя диаметром 8 мм, используемого для радиогенераторов, который имеет ферритовый шарик. Схема передатчика работает от 9-12 В постоянного тока.

Товары для изобретателей Ссылка на магазин.

Схема ультразвукового приемника

Схема приемника (рис.2) построена вокруг счетчика CD4017 (IC4) одного десятилетия и нескольких дискретных компонентов. Чтобы проверить работу передатчика, необходимо преобразовать сигнал 40 кГц в 4 кГц, чтобы вывести его в звуковой диапазон. При использовании приемника ультразвуковой передатчик 40 кГц можно быстро протестировать. Блок приемника (RX) находится рядом с тестируемым ультразвуковым передатчиком. Он обнаруживает передаваемый сигнал 40 кГц, который усиливается усилителем, встроенным в транзистор BC549 (T2). Усиленный сигнал поступает на декадный счетчик IC4, который делит частоту на 4 кГц. Транзистор T3 (SL100) усиливает сигнал 4 кГц для управления динамиком.

Глава 3. Клиническая эффективность метода ультразвуковой диагностики

Рис. 2: Схема ультразвукового приемника. Для питания приемника используйте батарею PP3 9 В. Разместите цепи передатчика и приемника в отдельных небольших шкафах. Если тестируемый преобразователь 40 кГц работает, схема приемника издает слышимый свистящий звук.

Использование ультразвука. Схема,

Использование ультразвука — это еще одно направление в разработках «Детекторов Близости». На рис.1 показано, как работает такое устройство. В верхней части рисунка изображена возможная конфигурация, когда передатчик и приемник ультразвука находится напротив друг друга. Пока ничто не мешает ультразвуку в полной мере достигать приемника, схема находится в ожидании. А помешать этому может как раз нарушитель, находящийся между излучателем и приемником.

Про анемометры:  BAXI LUNA-3: Инструкция и руководство на русском

Электроника для самоделок в китайском магазине.

Варианты ультразвуковой охранной сигнализации

Зарабатывайте в интернете с этой старой доброй ПАРТНЕРКОЙ.

Подобное устройство способно обеспечить весьма высокий уровень надежности. Ведь любое снижение уровня сигнала от передатчика или паже прекращение его работы вообще будет расцениваться цепями приемника как опасность. Вышеприведенные примеры могут возникнуть просто при выводе передатчика из строя.

В нижней части рисунка изображено другое эффективное расположение приемника и передатчика. В этом случае ультразвук отражается от отнесенного на расстояние твердого предмета и поступает на приемник. Сигнал, излучаемый передатчиком, должен быть достаточно мощным. Естественно, всякий объект, вставший на пути звука, вызовет сигнал тревоги.

Возможен другой путь работы устройства. В этом случае звук достигает приемника, только отразившись от грабителя, находящегося поблизости от передатчика и приемника.

Все описанные способы хороши, так что выбирайте один из них, который лучше всего подходит к вашим условиям. Ультразвуковой сторож с раздельными приемником и передатчиком

На рис.1 приведена принципиальная схема ультразвукового передатчика.

Основой ее является таймер типа 555, а рабочую частоту определяют номиналы резисторов R1 и R4 и конденсатора С1.

Ультразвуковой излучатель TR1 обеспечивает наибольшую отдачу на собственной резонансной частоте, а значит, и питаться должен именно с этой частотой. Если во время работы устройства частота генератора передатчика будет «плавать», это в какой-то момент приведет к снижению уровня сигнала, излучаемого передатчиком, т. е. вызовет ложную тревогу. Для повышения стабильности частоты генератора в нем через конденсатор C3 создана обратная связь. Сам излучатель становится подобным резонансному контуру, сигнал на котором максимален на частоте резонанса. Таким образом, наведенная положительная обратная связь удерживает генератор на собственной частоте излучателя и сужает диапазон перестройки ее резистором R4. Для еще большего повышения стабильности частоты следует питать схему от стабилизированного источника питания. Но надо сказать, что скачки напряжения питания до 1 В не вызывают ни ухода частоты, ни снижения уровня выходного сигнала.

Передатчик собирают на плате из изоляционного материала и помещают в металлический или пластмассовый корпус. При монтаже соблюдайте аккуратность, а в целом схема некритична к расположению деталей, и конструкцию подберите по своему усмотрению. Поскольку деталей в передатчике немного, неплохо было бы и плату, и излучатель расположить в одном корпусе. К тому же длинные соединительные провода, идущие к излучателю, отрицательно влияют на работу схемы. Но если все равно не удастся обойтись без проводов, делайте их не больше 15 см длиной.

Когда все подготовительные работы закончены, приступайте к наладке передатчика. Задача состоит в настройке его на собственную частоту излучателя. Если у вас есть осциллограф, его сигнальный провод подключите к точке соединения конденсаторов С2 и C3, а «землю» — к общему проводу схемы. Переключатель диапазонов усиления установите в положение 1 В/дел. Резистором R4 добейтесь существенного увеличения амплитуды сигнала на экране осциллографа. Максимальный сигнал показывает, что мы настроились на резонансную частоту. Эту единственную операцию по наладке передатчика можно и отложить до времени, когда будет готов приемник.

Транзисторы Q1, Q2 и Q3 образуют общеизвестный трехкаскадный усилитель, в задачу которого входит увеличение уровня принятого сигнала до значения, когда его можно будет продетектировать, а полученным постоянным напряжением перевести транзистор Q4 в открытое состояние. Общее усиление схемы регулируется переменным резистором R13, включенным в цепь эмиттера транзистора Q3. С коллектора этого транзистора сигнал поступает на выпрямитель с удвоением напряжения. Постоянное напряжение, выделяющееся на конденсаторе С5, создает смещение на базе транзистора Q4 через резистор R12. Сборка приемника ничем практически не отличается от сборки передатчика. Как и там, провода, соединяющие ультразвуковой датчик со схемой, должны быть по возможности короткими. Готовую плату поместите в металлический или пластмассовый корпус.

Введение устройства в работу

Если следовать изображению в верхней части рис. 3.20, первым шагом по проверке работы схемы должно быть определение, насколько далеко можно разнести приемник и передатчик. Выберите место, где отсутствуют воздушные потоки. Излучатель передатчика разместите на высоте 1 м над полом, направив его в открытое пространство. Подайте питание от временного источника на приемник. Установите резистор R13 в положение наименьшего сопротивления, что будет соответствовать максимальному усилению. Подключите вольтметр постоянного напряжения к зажимам Лив. Если амплитуда ультразвуковых волн достаточно высока, вольтметр будет показывать напряжение, почти равное напряжению питания. Медленно отходите с приемником от излучателя передатчика. С какого-то места показания вольтметра начнут прыгать, иногда даже падая до нуля. После этого сократите расстояние на 30-60 см, еще раз убедившись, что устройство работает надежно.

При установке ультразвуковой сигнализации следует соблюдать несколько четких установок.

1. Не размешайте ее в зоне, где работает кондиционер в режиме нагнетания воздуха. Иначе сигнализация будет срабатывать всякий раз при его переключении.
2. Не оставляйте поблизости никаких предметов, которые могут из-за сквозняка попасть в луч передатчика.
3. Не пытайтесь использовать систему на улице или в помещении, где постоянно открываются окна и двери.
4. Если звери или птицы — постоянные обитатели той территории, где вы собираетесь применить такую сигнализацию, то здесь она неприемлема.

Про анемометры:  Онлайн настройка ГБО Lovato в Easy Fast / Блог с перчинкой

Как уже говорилось выше, можно так расположить передатчик и приемник, что последний будет воспринимать звук, отраженный от какой-либо твердой поверхности. Это может быть стека или дверь. Одежда человека плохо отражает и, наоборот, хорошо поглощает ультразвук. Когда кто-либо пересечет один из лучей, сигнализация сработает. Если под охраной находилась дверь, то устройство среагирует, когда ее откроют.

Излучатель передатчика и ультразвуковой датчик приемника располагают на расстоянии не более 5 см друг от друга, при этом устройство способно «заметить» человека или какой-либо объект в нескольких сантиметрах от него. Где бы вы ни устанавливали свое творение, не забывайте о следующем: не следует настраиваться на максимальную чувствительность и использовать устройство в неблагоприятных окружающих условиях. Устройство сигнализации с объединенными приемником и передатчиком

Схема следующего ультразвукового сторожа показана на рис.1. Схема необычна тем, что на базе одной микросхемы в ней собран генератор передатчика и что она же работает как избирательный приемник отраженного сигнала. Для этого используется микросхема 567, вмещающая в себя источник сигнала и его приемник.

Рис.1. Схема приемопередатчика

Познакомимся поближе с тем, как функционирует схема, выполняющая двойную работу. Волны воспринимаются пьезокерамическим датчиком, после чего усиленные каскадом на транзисторе Q2 они поступают на вывод 3 микросхемы, причем частоте сигнала получается в точности равной той, что генерирует сама микросхема. В отличие от ранее описанного устройства в этой ситуации уже не важно, насколько частота может отклониться от первоначально установленной.

Рабочая частота определяется номиналами цепочки резисторов R3 и R6 и емкости конденсатора C3. Регулируется она переменным резистором R6. При заданных номиналах деталей она может варьироваться в пределах от 8 до 25 кГц, а в конечном счете определяется применяемыми пьезодатчиками. С вывода 5 микросхемы сигнал прямоугольной формы поступает на базу транзистора Q1, включенного по схеме с общим коллектором. В качестве нагрузки этого транзистора включена цепочка из резистора R5 и низкоомного динамика. Когда на вход схемы поступает достаточный по амплитуде сигнал, светодиод горит, а клеммы А и В представляют собой нормально замкнутые контакты. В случае, когда амплитуда сигнала понижается или он совсем отсутствует, выход схемы переходит в разомкнутое состояние. В остальном это устройство может быть использовано по любой конфигурации из предложенных на рис. 3.20. Откровенно говоря, схема лучше работает на высоких звуковых частотах, чем на ультразвуковых.

Последнее слово о рабочей частоте говорят применяемые в устройстве излучатель и пьезодатчик. Для тех из них, которые указаны в списке применяемых деталей, частота варьируется в диапазоне от 8 до 16 кГц. Если вас не удовлетворят такие частоты, нужно лишь подобрать другую» пару, поскольку сама схема может работать на частотах до 25 кГц. Верхний же предел ограничен лишь возможностями микросхемы. Но не следует особенно усердствовать, поскольку для частот выше 43 кГц уже трудно подобрать излучатель и пьезодатчик.

В комплекте с двумя предложенными преобразователями схема очень хорошо работает на частоте 12 кГц. И не страшно, что она слышна. Ведь едва ли кто-либо отважится с ней поспорить. Да и мыши, судя по всему, предпочтут какое-нибудь другое место, чем это.

Детали схемы монтируются на плате из изоляционного материала, и, поскольку их не так много, плотность монтажа не сказывается на ее функционировании. В данной конструкции не требуется размещать пьезодатчик и излучатель поблизости от самой схемы. Но тогда для каждого преобразователя желательно использовать экранированные провода. Этим вы избежите возникновения связи напрямую между выходом и входом схемы.

Ввод устройства в эксплуатацию. Проверив правильность монтажа, подключите питание схемы. Это может быть источник напряжением 6-9 В. Ползунок резистора R6 установите в среднее положение, при этом вы должны слышать писк высокого тона. Установите излучатель на столе или другой подставке так, чтобы перед ним было свободное пространство в 3 м. Держа пьезодатчик в руках, «направьте его на излучатель. Светодиод при этом должен загореться. Отходя с пьезодатчиком от излучателя, заметьте то место, где светодиод погаснет. Это означает, что вы нашли точку максимальной чувствительности.

Укажем места, где удобно расположить такую сигнализацию:

— через помещение;
— на выходе;
— напротив напольного, настенного сейфа или дорогой картины;
— на проходе на чердак или в полуподвал;
— в любом другом месте, где может пройти грабитель.

Публикация: Н. Большаков, rf.atnn.ru

Ультразвуковые преобразователи(излучатели,приёмники, передатчики,расходомеры,сенсоры)

Для полнофункционального использования сайта, пожалуйста, включите JavaScript!
Как?

Прайс-листАкустические и ультразвуковые компонентыУльтразвуковые компоненты и оборудуваниеУльтразвуковые преобразователи(излучатели,приёмники, передатчики,расходомеры,сенсоры)

Показаны позиции с 1 по 20 из 144

Позиций на странице: 20
50
100
200

2 3 4 5 6 7 8

Последнее обновление базы данных: 21-03-2023 12:11

Оцените статью
Анемометры
Добавить комментарий