Измерение силы и массы

Содержание
  1. Понятие силы
  2. Сила – вектор
  3. Упругая vs. возвращающая силаПравить
  4. Определение силы
  5. Сила упругости
  6. Давление, сила давления
  7. Фундаментальные взаимодействияПравить
  8. Измерение сил
  9. Нелинейные деформацииПравить
  10. Деформация
  11. Типы взаимодействия в физике
  12. Малые деформации. Закон ГукаПравить
  13. Ньютоновская механикаПравить
  14. Третий закон Ньютона
  15. Сообщающиеся сосуды
  16. Производные виды силПравить
  17. График зависимости силы упругости от жесткости
  18. Давление газов и жидкостей
  19. Работа, энергия, мощность
  20. Формула для расчета КПД
  21. Исторический аспект понятия силыПравить
  22. В доклассической механике
  23. В классической механике
  24. Сила тяжести, вес, масса, плотность
  25. Измерение силы
  26. Механический рычаг, момент силы
  27. Закон Архимеда
  28. Измерение физических величин
  29. Параллельное и последовательное соединение пружин
  30. Последовательное соединение системы пружин
  31. Параллельное соединение системы пружин

Понятие силы

В инерциальной системе отсчета изменение скорости тела возможно только при взаимодействии его с другими телами. Для характеристики этого взаимодействия используют такую физическую величину как сила. Сила дает количественную меру взаимодействия тел.

Сила – вектор

Сила имеет модуль (величину), направление и точку приложения. Если на тело действуют несколько сил, то их можно заменять равнодействующей силой, которая находится как векторная сумма всех сил, приложенных к телу. И наоборот, любую силу можно разложить на составляющие, векторная сумма которых равна рассматриваемой силе.

Равнодействующую можно найти по правилу треугольника, параллелограмма или многоугольника. Если многоугольник сил будет замкнутым, значит, равнодействующая сила равна нулю.

Часть видов сил зависит от взаимного расположения тел при их взаимодействии, например, гравитационные силы, силы Кулона и т.д. Другие силы зависят от относительной скорости движения тел, находящихся во взаимодействии, например, сила трения. Не смотря на специфику разного рода сил, их общим свойством является то, что они сообщают телам, на которые действуют, ускорения.

Единица измерения силы в Международной системе единиц – ньютон.

Упругая vs. возвращающая силаПравить

Сила упругости являет собой важнейший пример возвращающей силы, стремящейся вернуть отклонённые от положения покоя тело или материальную точку в исходное положение.

Определение силы

Начнем с самого главного — со слова «сила» в физике.

Сила — векторная физическая величина, которая является мерой воздействия на данное тело со стороны других тел или полей.

Представьте, что вы ходите по супермаркету и выбираете продукты, бережно складывая их в тележку. Вы передвигаете ее с помощью силы ваших мускулов, и чем сильнее вы напряжете руки и толкнете тележку, тем на большее расстояние она укатится (только аккуратно, не попадите в стенд с газировкой!).

Или вспомните урок физкультуры, где соревнуются в перетягивании каната: команда соперников может даже потерять равновесие, если вы одновременно с вашими друзьями потянете канат на себя.

Результаты действия сил мы можем видеть постоянно: любой подброшенный предмет падает на землю, тела плавают на поверхности жидкости, пружины растягиваются под весом груза. Даже Вселенная подчиняется законам сил: астероиды летают по определенным траекториям, а черные дыры со всей своей мощью поглощают свет далеких звезд. 💫

Получай лайфхаки, статьи, видео и чек-листы по обучению на почтуПолезные подарки для родителейВ колесе фортуны — гарантированные призы, которые помогут наладить учебный процесс и выстроить отношения с ребёнком!

Сила упругости

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 февраля 2021 года; проверки требуют 18 правок.

Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Направление вектора этой силы противоположно направлению деформации тела (смещению его молекул). Если исчезает деформация тела, то исчезает и сила упругости. Энергия упругих деформаций является потенциальной. При малых деформациях величина силы упругости часто пропорциональна величине деформации, а энергия зависит от деформации квадратично.

Давление, сила давления

Прилагая одну и ту же силу к предмету, можно получить разный результат в зависимости от того, на какую площадь эта сила распределена. Объясняют этот феномен в программе 7 класса физические термины «давление» и «сила давления».

Давление — это величина, равная отношению силы, действующей на поверхность, к площади этой поверхности.Сила давления направлена перпендикулярно поверхности.

p = F / S, где F — модуль силы, S — площадь поверхности.

Единица измерения давления в СИ: паскаль (Па).

1 Па = 1 Н/м2

Понятно, что при одной и той же силе воздействия более высокое давление испытает та поверхность, площадь которой меньше.

Формулу для расчета силы давления вывести несложно:

F = p × S

В задачах по физике за 7 класс сила давления, как правило, равна весу тела.

Фундаментальные взаимодействияПравить

Все силы в природе основаны на четырёх типах фундаментальных взаимодействий. Максимальная скорость распространения всех видов взаимодействия равна скорости света в вакууме. Электромагнитные силы действуют между электрически заряженными телами, гравитационные — между массивными объектами. Сильное и слабое проявляются только на очень малых расстояниях, они ответственны за возникновение взаимодействия между субатомными частицами, включая нуклоны, из которых состоят атомные ядра.

Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» объясняется существующей с античности традицией объяснять любые явления в окружаемом мире действием специфических для каждого явления «сил».

Электростатическое поле (поле неподвижных зарядов)

Развитие физики после Ньютона добавило к трём основным (длина, масса, время) величинам электрический заряд с размерностью «кулон» (C). Однако, исходя из требований практики, в качестве основной единицы измерения стали использовать не единицу заряда, а единицу силы электрического тока. Так, в системе СИ основной единицей является ампер, а единица заряда — кулон — производная от него.

Поскольку заряд как таковой не существует независимо от несущего его тела, электрическое взаимодействие тел проявляется в виде рассматриваемой в механике силы, служащей причиной ускорения. Применительно к электростатическому взаимодействию двух точечных зарядов с величинами   и  , располагающихся в вакууме, используется закон Кулона. В форме, соответствующей системе СИ, он имеет вид:

где   — сила, с которой заряд 1 действует на заряд 2,   — вектор, направленный от заряда 1 к заряду 2 и по модулю равный расстоянию между зарядами, а   — электрическая постоянная, равная ≈ 8,854187817•10−12 Ф/м. При помещении зарядов в однородную и изотропную среду сила взаимодействия уменьшается в ε раз, где ε — диэлектрическая проницаемость среды.

Сила направлена вдоль линии, соединяющей точечные заряды. Графически электростатическое поле принято изображать в виде картины силовых линий, представляющих собой воображаемые траектории, по которым перемещалась бы лишённая массы заряженная частица. Эти линии начинаются на одном и заканчиваются на другом заряде.

Магнитостатическое поле (поле постоянных токов)

Существование магнитного поля признавалось ещё в средние века китайцами, использовавшими «любящий камень» — магнит в качестве прообраза магнитного компаса. Графически магнитное поле принято изображать в виде замкнутых силовых линий, густота которых (так же, как и в случае электростатического поля) определяет его интенсивность. Исторически наглядным способом визуализации магнитного поля были железные опилки, насыпаемые, например, на лист бумаги, положенный на магнит.

Эрстед установил, что текущий по проводнику ток вызывает отклонение магнитной стрелки.

Фарадей пришёл к выводу, что вокруг проводника с током создаётся магнитное поле.

Ампер высказал гипотезу, признанную в физике в качестве модели процесса возникновения магнитного поля, которая предполагает существование в материалах микроскопических замкнутых токов, обеспечивающих совместно эффект естественного или наведённого магнетизма.

Ещё, Ампером было установлено, что в находящейся в вакууме системе отсчёта, по отношению к которой заряд находится в движении, то есть ведёт себя как электрический ток, возникает магнитное поле, интенсивность которого определяется вектором магнитной индукции  , лежащим в плоскости, расположенной перпендикулярно по отношению к направлению движения заряда.

Тот же Ампер впервые измерил силу взаимодействия двух параллельных проводников с текущими по ним токами. Один из проводников создавал вокруг себя магнитное поле, второй реагировал на это поле сближением или удалением с поддающейся измерению силой, зная которую и величину силы тока можно было определить модуль вектора магнитной индукции.

Силовое взаимодействие между электрическими зарядами, не находящимися в движении относительно друг друга, описывается законом Кулона. Однако заряды, находящиеся в таком движении, порождают и магнитные поля, посредством которых созданные движением зарядов токи в общем случае приходят в состояние силового взаимодействия.

Про анемометры:  Установка напольного газового котла: монтаж, устройство, как подключить котел, схема на фото и видео

Принципиальным отличием силы, возникающей при относительном движении зарядов, от случая их стационарного размещения, является различие в геометрии этих сил. Для случая электростатики сила взаимодействия двух зарядов направлена по линии, их соединяющей. Поэтому геометрия задачи двумерна и рассмотрение ведётся в плоскости, проходящей через эту линию.

В случае токов сила, характеризующая магнитное поле, создаваемое током, расположена в плоскости, перпендикулярной току. Поэтому картина явления становится трёхмерной. Магнитное поле, создаваемое бесконечно малым по длине элементом первого тока, взаимодействуя с таким же элементом второго тока, в общем случае создаёт силу, действующую на него. При этом для обоих токов эта картина полностью симметрична в том смысле, что нумерация токов произвольна.

Закон взаимодействия токов используется для эталонирования постоянного электрического тока.

Сильное взаимодействие — фундаментальное короткодействующее взаимодействие между адронами и кварками.
В атомном ядре сильное взаимодействие удерживает вместе положительно заряженные (испытывающие электростатическое отталкивание) протоны, происходит это посредством обмена пи-мезонами между нуклонами (протонами и нейтронами). Пи-мезоны живут очень мало, времени жизни им хватает лишь на то, чтобы обеспечить ядерные силы в радиусе ядра, потому ядерные силы называют короткодействующими. Увеличение количества нейтронов «разбавляет» ядро, уменьшая электростатические силы и увеличивая ядерные, но при большом количестве нейтронов они сами, будучи фермионами, начинают испытывать отталкивание вследствие принципа Паули. Также при слишком сильном сближении нуклонов начинается обмен W-бозонами, вызывающий отталкивание, благодаря этому атомные ядра не «схлопываются».

Внутри самих адронов сильное взаимодействие удерживает вместе кварки — составные части адронов. Квантами сильного поля являются глюоны. Каждый кварк имеет один из трёх «цветовых» зарядов, каждый глюон состоит из пары «цвет»-«антицвет». Глюоны связывают кварки в так называемый «конфайнмент», из-за которого на данный момент свободные кварки в эксперименте не наблюдались. При отдалении кварков друг от друга энергия глюонных связей возрастает, а не уменьшается как при ядерном взаимодействии. Затратив много энергии (столкнув адроны в ускорителе), можно разорвать кварк-глюонную связь, но при этом происходит выброс струи новых адронов. Впрочем, свободные кварки могут существовать в космосе: если какому-то кварку удалось избежать конфайнмента во время Большого взрыва, то вероятность аннигилировать с соответствующим антикварком или превратиться в бесцветный адрон для такого кварка исчезающе мала.

Слабое взаимодействие — фундаментальное короткодействующее взаимодействие. Радиус действия 10−18 м. Симметрично относительно комбинации пространственной инверсии и зарядового сопряжения. В слабом взаимодействии участвуют все фундаментальные фермионы (лептоны и кварки). Это единственное взаимодействие, в котором участвуют нейтрино (не считая гравитации, пренебрежимо малой в лабораторных условиях), чем объясняется колоссальная проникающая способность этих частиц. Слабое взаимодействие позволяет лептонам, кваркам и их античастицам обмениваться энергией, массой, электрическим зарядом и квантовыми числами — то есть превращаться друг в друга. Одно из проявлений — бета-распад.

Измерение сил

Результатом взаимодействия тел является деформация тела или его ускорение (или то и другое одновременно). Любе проявление силы можно использовать для ее измерения.

Для измерения силы на основе явления упругой деформации выбирают, как эталон пружину, для которой известно, что при растяжении на заданную длину пружина действует на закрепленное на ней тело, силой$ F_0$, которая направлена по оси пружины. Считаем, что две любые силы равны и имеют противоположные направления, если они действуют одновременно, а тело в инерциальной системе отсчета находится в покое или равномерно и прямолинейно движется. Тогда такой эталон можно дублировать в любом количестве. Имея описанную выше пружину можно установить наличие силы, но для ее измерения наш динамометр следует градуировать.

Нелинейные деформацииПравить

При увеличении величины деформации, закон Гука перестаёт действовать, сила упругости начинает сложным образом зависеть от величины растяжения или сжатия.

При этом во всех случаях   является возрастающей (хотя и уже нелинейной) функцией величины деформации   как в режимах растяжения, так и в режимах сжатия.

Деформация

Деформация — это изменение формы и размеров тела (или части тела) под действием внешних сил

Происходит деформация из-за различных факторов: при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу сил. Одни процессы деформации связаны с преимущественно перпендикулярно (нормально) приложенной силой, а другие — преимущественно с силой, приложенной по касательной.

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

  • Деформация при кручении
  • Деформация при изгибе

Типы взаимодействия в физике

В настоящее время в физике выделяют следующие типы взаимодействий:

  • Гравитационное взаимодействие, появляющееся между телами результате всемирного тяготения. Действуют гравитационные силы.
  • Электромагнитное взаимодействие, существующее между заряженными частицами и телами. Действуют электромагнитные силы.
  • Сильное (ядерное) взаимодействие, относящееся к взаимодействию элементарных частиц.
  • Слабое ядерное взаимодействие в результате которого, происходит распад элементарных частиц.

Механика исследует силы, которые появляются при непосредственном контакте тел (силы трения и силы упругости) и силы тяготения.

Малые деформации. Закон ГукаПравить

где   — коэффициент упругости (жёсткость тела),   — удлинение (величина деформации). Жёсткость зависит от формы и размеров тела, а также от материала, из которого оно изготовлено.

В словесной формулировке закон Гука звучит следующим образом:

Сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации.

Сила упругости способна обеспечить реализацию колебательного процесса в той или иной системе, например в пружинном маятнике; при малых деформациях его колебания будут гармоническими.

Ньютоновская механикаПравить

Второй закон Ньютона имеет вид:

где   — масса материальной точки,   − её ускорение,   — равнодействующая приложенных сил.
Считается, что это «вторая самая известная формула в физике» («первой» значится формула эквивалентности массы и энергии), хотя сам Ньютон никогда явным образом не записывал свой второй закон в этом виде. Впервые данную форму закона можно встретить в трудах К. Маклорена и Л. Эйлера.

Третий закон Ньютона

Смотря какие. Думаем, для вас не секрет, что все тела состоят из молекул и атомов. На таком уровне между частицами существуют силы притяжения и отталкивания, от них никуда не деться. Если бы отсутствовали силы притяжения, молекулы бы разлетались друг от друга и не могли формировать тела. Уберите силы отталкивания, и все частицы слепятся в один большой комок.

На все тела в пределах планеты Земля действует сила тяжести. Именно поэтому все предметы, которые вы подбросите в воздух, устремятся вниз, а не вверх. Выйдя в открытый космос, мы попадем в состояние невесомости: на нас не будет действовать сила притяжения Земли. Но не спешите радоваться свободе! Во-первых, на космический корабль будет действовать аэродинамическая сила, а во-вторых, мы легко можем стать зависимы от силы притяжения другой планеты, как только приблизимся к ней.

Некоторые силы возникают только при определенных условиях. Возьмем любой предмет и начнем его деформировать, растягивать или сжимать — возникнет сила упругости. Погрузим тело в жидкость — появится сила Архимеда, начнем катить по дороге — движению будет препятствовать сила трения качения.

У любой физической величины есть свое обозначение и единица измерения. Как же сила обозначается в физике?

Вернемся к единице измерения силы. Интересно, что ньютоны — это не основная, а производная единица международной системы СИ.

1 Н = 1 кг · м/с2.

А значит, сила, равная одному ньютону, определяется как взаимодействие, которое за 1 секунду изменяет скорость тела массой 1 кг на 1 м/с в направлении действия силы.

К ньютонам можно прибавлять дольные и кратные приставки, чтобы выразить величину как можно удобнее, не используя при этом огромное количество нулей.

Так, 1 кН = 1 000 Н; 1 гН = 100 Н; 1 мН = 0,001 Н.

Сообщающиеся сосуды

Сообщающимися называются сосуды, которые имеют общее дно либо соединены трубкой. Уровень однородной жидкости в таких сосудах всегда одинаков, независимо от их формы и сечения.

Про анемометры:  Газовый котел VAILLANT TURBOTEC PLUS VU 322/3-5 (32 кВт) – характеристики, отзывы, плюсы-минусы, конкуренты и все цены в обзоре

Если ρ1 = ρ2, то h1 = h2 и ρ1gh1 = ρ2gh2, где:

p — плотность жидкости,

h — высота столба жидкости,

g = 9,8 м/с2.

Если жидкость в сообщающихся сосудах неоднородна, т. е. имеет разную плотность, высота столба в сосуде с более плотной жидкостью будет пропорционально меньше.

Высоты столбов жидкостей с разной плотностью обратно пропорциональны плотностям.

Гидравлический пресс — это механизм, созданный на основе сообщающихся сосудов разных сечений, заполненных однородной жидкостью. Такое устройство позволяет получить выигрыш в силе для оказания статического давления на детали (сжатия, зажимания и т. д.).

Если под поршнем 1 образуется давление p1 = f1/s1, а под поршнем 2 будет давление p2 = f2/s2, то, согласно закону Паскаля, p1 = p2

Силы, действующие на поршни гидравлического пресса F1 и F2, прямо пропорциональны площадям этих поршней S1 и S2.

Другими словами, сила поршня 1 больше силы поршня 2 во столько раз, во сколько его площадь больше площади поршня 2. Это позволяет уравновесить в гидравлической машине с помощью малой силы многократно бóльшую силу.

Производные виды силПравить

Всё многообразие проявляющих себя в природе сил в принципе может быть сведено к четырём фундаментальным, представленным в предыдущем разделе.

Однако на практике подобная детализация природы разных сил часто оказывается нецелесообразной или невозможной. Поэтому силы, «производные» по отношению к фундаментальным, обычно рассматриваются как самостоятельные характеристики взаимодействия тел и имеют свои наименования: «сила натяжения», «сила Ван-дер-Ваальса» и другие (см. список названий сил в физике).

График зависимости силы упругости от жесткости

Закон Гука можно представить в виде графика. Это график зависимости силы упругости от изменения длины и по нему очень удобно можно рассчитать коэффициент жесткости. Давай рассмотрим на примере задач.

Определите по графику коэффициент жесткости тела.

Из Закона Гука выразим коэффициент жесткости тела:

F = kx

Снимем значения с графика. Важно выбрать одну точку на графике и записать для нее значения обеих величин.

Например, возьмем вот эту точку.

В ней удлинение равно 2 см, а сила упругости 2 Н.

Переведем сантиметры в метры:

2 см = 0,02 м

И подставим в формулу:

Ответ:жесткость пружины равна 100 Н/м

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

На рисунке представлены графики зависимости удлинения от модуля приложенной силы для стальной (1) и медной (2) проволок равной длины и диаметра. Сравнить жесткости проволок.

Возьмем точки на графиках, у которых будет одинаковая сила, но разное удлинение.

Мы видим, что при одинаковой силе удлинение 2 проволоки (медной) больше, чем 1 (стальной). Если выразить из Закона Гука жесткость, то можно увидеть, что она обратно пропорциональна удлинению.

Значит жесткость стальной проволоки больше.

Ответ: жесткость стальной проволоки больше медной.

Давление газов и жидкостей

Жидкости и газы, заполняющие сосуд, давят во всех направлениях: на стенки и дно сосуда. Это давление зависит от высоты столба данного вещества и от его плотности.

Формула гидростатического давления:

р = ρ × g × h, где ρ — плотность вещества, g — ускорение свободного падения, h — высота столба.

Единица измерения давления жидкости или газа в СИ: паскаль (Па).

Однородная жидкость или газ давит на стенки сосуда равномерно, поскольку это давление создают хаотично движущиеся молекулы. И внешнее давление, оказываемое на вещество, тоже равномерно распределяется по всему его объему.

Закон Паскаля: давление, производимое на поверхность жидкого или газообразного вещества, одинаково передается в любую его точку независимо от направления.

Внешнее давление, оказываемое на жидкость или газ, рассчитывается по формуле:

Работа, энергия, мощность

Механическая работа — это физическая величина, которая равна произведению перемещения тела на модуль силы, под действием которой было выполнено перемещение.

Формула работы в курсе физики за 7 класс:

A = F × S, где F — действующая сила, S — пройденный телом путь.

Единица измерения работы в СИ: джоуль (Дж).

Такое понятие, как мощность, описывает скорость выполнения механической работы. Оно говорит о том, какая работа была совершена в единицу времени.

Мощность — это физическая величина, равная отношению работы к временному промежутку, потребовавшемуся для ее выполнения.

N = A / t, где A — работа, t — время ее совершения.

Также мощность можно вычислить, зная силу, воздействующую на тело, и среднюю скорость перемещения этого тела.

N = F × v, где F — сила, v — средняя скорость тела.

Единица измерения мощности в СИ: ватт (Вт).

Тело может совершить какую-либо работу, если оно обладает энергией — кинетической и/или потенциальной.

  • Кинетической называют энергию движения тела. Она говорит о том, какую работу нужно совершить, чтобы придать телу определенную скорость.
  • Потенциальной называется энергия взаимодействия тела с другими телами или взаимодействия между частями одного целого. Потенциальная энергия тела, поднятого над Землей, характеризует, какую работу должна совершить сила тяжести, чтобы опустить это тело снова на нулевой уровень.

Таблица с формулами по физике за 7 класс для вычисления кинетической и потенциальной энергии:

Для того, чтобы понять, какая часть совершенной работы была полезной, вычисляют коэффициент полезного действия или КПД. С его помощью определяется эффективность различных механизмов, инструментов и т. д.

Коэффициент полезного действия (КПД) отражает полезную часть выполненной работы. Также его можно выразить через отношение полезно использованной энергии к общему количеству полученной энергии.

Формула для расчета КПД

где Ап— полезная работа, Аз— затраченная работа.

КПД выражается в процентах и составляет всегда меньше 100%, поскольку часть энергии затрачивается на трение, повышение температуры воздуха и окружающих тел, преодоление силы тяжести и т. д.

Удачи на экзаменах!

Исторический аспект понятия силыПравить

Человечество вначале стало воспринимать понятие силы через непосредственный опыт передвижения тяжёлых предметов. «Сила», «мощность», «работа» при этом были синонимами (как и в современном языке за пределами естествознания). Перенос личных ощущений на объекты природы привёл к антропоморфизму: все предметы, которые могут воздействовать на другие (реки, камни, деревья) должны быть живыми, в живых существах должна содержаться та же сила, которую человек чувствовал в себе.

В доклассической механике

Бэкон и Оккам вернули в науку идею о дальнодействии.

В классической механике

А какие силы вообще существуют? Давайте разберемся вместе.

На фундаментальном уровне ученые выделяют четыре типа сил: слабые, сильные, гравитационные и электромагнитные.

  • Слабое взаимодействие происходит при распаде атомных ядер и элементарных частиц.
  • Сильное взаимодействие отвечает за притяжение между нуклонами — протонами и нейтронами в ядре атомов.
  • К гравитационным силам принято относить тот тип взаимодействий, которые происходят между материальными телами, имеющими массу. Сила тяготения и сила тяжести по праву относятся к такому типу, так как зависят прямо пропорционально от массы тела.
  • Электромагнитные силы действуют между всеми частицами, у которых есть электрические заряды. К ним можно отнести силу упругости, трения, вес тела, силу Архимеда и другие.

Сила как физическая величина характеризуется:

Рассмотрим таблицу и сравним некоторые силы по их направлению и точке приложения:

Давайте займемся баскетболом. Начнем набивать мяч о пол, он будет чудесно отскакивать. Этот удар можно назвать упругим. Если при ударе деформации не будет совсем, то он будет называться абсолютно упругим.

Если вы перепутали мяч и взяли пластилиновый, он деформируется при ударе и не оттолкнется от пола. Такой удар будет называться абсолютно неупругим.

Деформацию тоже можно назвать упругой (при которой тело стремится вернуть свою форму и размер в изначальное состояние) и неупругой (когда тело не может вернуться в исходное состояние).

При деформации возникает сила упругости— это та сила, которая стремится вернуть тело в исходное состояние, в котором оно было до деформации.

Сила упругости, возникающая при упругой деформации растяжения или сжатия тела, пропорциональна абсолютному значению изменения длины тела. Выражение, описывающее эту закономерность, называется законом Гука.

Какой буквой обозначается сила упругости?

Изменение длины может обозначаться по-разному в различных источниках.

Варианты обозначений: x, ∆x, ∆l.

Это равноценные обозначения — можно использовать любое удобное.

Поскольку сила упругости всегда направлена против деформации (она же стремится все «распрямить»), в Законе Гука должен быть знак минус. Часто его и можно встретить в разных учебниках. Но поскольку мы учитываем направление этой силы при решении задач, знак минус можно не ставить.

Про анемометры:  Предохранители Газ 53 и реле с описанием и электросхемой

На сколько удлинится рыболовная леска жесткостью 0,3 кН/м при равномерном (без ускорения) поднятии вверх рыбы весом 300 г?

Сначала определим силу тяжести. Не забываем массу представить в единицах СИ – килограммах.

СИ — международная система единиц.«Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

m = 300 г = 0,3 кг

Если принять ускорение свободного падения равным 10 м/с*с, то модуль силы тяжести равен :

F = mg = 0,3*10 = 3 Н.

Вспомним закон Гука:

И выразим из него модуль удлинения лески:

Так как одна сила уравновешивает другую, мы можем их приравнять:

Подставим числа, жесткость лески при этом выражаем в ньютонах:

= 0,01 м = 1 см

Ответ: удлинение лески равно 1 см.

Сила тяжести, вес, масса, плотность

Формулы, понятия и определения, описывающие эти физические характеристики, изучают в 7 классе в рамках такого раздела физики, как динамика.

Вес тела или вещества — это физическая величина, которая характеризует, с какой силой оно действует на горизонтальную поверхность или вертикальный подвес.

Обратите внимание: вес тела измеряется в ньютонах, масса тела — в граммах и килограммах.

P = mg, где m — масса тела, g — ускорение свободного падения.

Ускорение свободного падения возникает под действием силы тяжести, которой подвержены все находящиеся на нашей планете тела.

g = 9,806 65 м/с2 или 9,8 Н/кг

Если тело находится в покое или в прямолинейном равномерном движении, его вес равен силе тяжести.

Fтяж = mg

Но эти понятия нельзя отождествлять: сила тяжести действует на тело ввиду наличия гравитации, в то время как вес — это сила, с которой само тело действует на поверхность.

Плотность тела или вещества – величина, указывающая на то, какую массу имеет данное вещество, занимая единицу объема. Плотность прямо пропорциональна массе и обратно пропорциональна объему.

ρ = m / V, где m — масса тела или вещества, V — занимаемый объем.

Единица измерения плотности в СИ: кг/м3.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Измерение силы

Как можно измерить силу? Есть два верных способа: практически, с помощью измерительного прибора, и через формулы.

Прибор для измерения силы носит название динамометр (от латинского «динамос» — сила). В зависимости от типа конструкции и применения динамометры бывают ручными, тяговыми, электронными, гидравлическими и пружинными.

В вопросе измерения сил с помощью формул есть множество нюансов. Какую формулу выбрать? Как научиться выражать неизвестное из формул? Где можно взять дополнительную информацию о величинах, значений которых нет в задаче? Ответы на все эти вопросы можно получить на онлайн-курсах физики в школе Skysmart! Уроки на интерактивной платформе проходят увлекательно, живо, с большим количеством опытов и экспериментов.

  • Giordano, Nicholas J. College physics: reasoning and relationships (англ.). — Belmont, CA: Cengage Brooks-Cole, 2009. — 1082 p. — ISBN 978-0-534-46243-7. — ISBN 0-534-46243-X.
  • BIPM – SI Brochure. www.bipm.org. Дата обращения: 23 ноября 2020. Архивировано 19 апреля 2021 года.
  • . Физическая энциклопедия. www.femto.com.ua. Дата обращения: 23 ноября 2020. Архивировано 2 октября 2015 года.
  • Определение возвращающей силы в Энцклопедии терминов стройматериалов.
  • См. Математический маятник (ф-ла 12.8).

По своей природе силы могут быть различными. Существуют гравитационные, электрические, магнитные и другие силы. При рассмотрении задач механики физическая природа сил, вызывающих ускорение тела, не является значимой и не рассматривается. При этом для всех видов взаимодействия количественная мера взаимодействия тел выбирается единым образом. Силы разной природы измеряют в одинаковых единицах, при помощи одних и тех же эталонов. В связи с такой универсальностью механика успешно описывает движение под воздействием сил любой природы.

Определение силы в механике отвечает на вопросы: как измерять силу, и какими свойствами она обладает?

Механический рычаг, момент силы

О механическом рычаге говорил еще Архимед, когда обещал перевернуть Землю, если только найдется подходящая точка опоры. Это простой механизм, который помогает поднимать грузы, закрепленные на одном его конце, прилагая силу к другому концу. При этом вес груза намного превосходит прилагаемое усилие. В 7 классе физические формулы, описывающие этот процесс, изучаются в том же разделе динамики.

Рычаг — это некое твердое тело, способное вращаться вокруг неподвижной точки опоры, на один конец которого действует сила, а на другом находится груз. Перпендикуляр, проведенный от точки опоры до линии действия силы, называется плечом силы.

Рычаг находится в равновесии, если произведение силы на плечо с одной его стороны равно произведению силы на плечо с другой стороны.

Закон Архимеда

На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу объема жидкости или газа, вытесненного частью тела, погруженной в жидкость или газ.

Формула архимедовой силы:

Fa = ρ × g × V, где ρ — плотность жидкости, V — объем погруженной части тела, g — ускорение 9,8 м/с2.

Закон Архимеда помогает рассчитать, как поведет себя тело при погружении в среды разной плотности. Верны следующие утверждения:

  • если плотность тела выше плотности среды, оно уйдет на дно;
  • если плотность тела ниже, оно всплывет на поверхность.

Другими словами, тело поднимется на поверхность, если архимедова сила больше силы тяжести.

Измерение физических величин

Измерением называют определение с помощью инструментов и технических средств числового значения физической величины.Результат измерения сравнивают с неким эталоном, принятым за единицу. В итоге значением физической величины считается полученное число с указанием единиц измерения.

В курсе по физике за 7 класс изучают правила измерений с использованием приборов со шкалой. Если цена деления шкалы неизвестна, узнать ее можно с помощью следующей формулы:

ЦД = (max − min) / n, где ЦД — цена деления, max — максимальное значение шкалы, min — минимальное значение шкалы, n — количество делений между ними.

Вместо максимального и минимального можно взять любые другие значения шкалы, числовое выражение которых нам известно.

Выделяют прямое и косвенное измерение:

  • при прямом измерении результат можно увидеть непосредственно на шкале инструмента;
  • при косвенном измерении значение величины вычисляется через другую величину (например, среднюю скорость определяют на основе нескольких замеров скорости).

Для удобства и стандартизации измерений в 1963 году была принята Международная система единиц СИ. Она регламентирует, какие единицы измерения считать основными и использовать для формул. Обозначения этих единиц также учат в программе по физике за 7 класс.

Параллельное и последовательное соединение пружин

В Законе Гука есть такая величина, как коэффициент жесткости— это характеристика тела, которая показывает его способность сопротивляться деформации. Чем больше коэффициент жесткости, тем больше эта способность, а как следствие из Закона Гука — и сила упругости.

Чаще всего эта характеристика используется для описания жесткости пружины. Но если мы соединим несколько пружин, то их суммарная жесткость нужно будет рассчитать. Разберемся, каким же образом.

Последовательное соединение системы пружин

Последовательное соединение характерно наличием одной точки соединения пружин.

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

Коэффициент жесткости при последовательном соединении пружин

Параллельное соединение системы пружин

Последовательное соединение характерно наличием двух точек соединения пружин.

В случае когда пружины соединены параллельно величина общего коэффициента жесткости системы будет увеличиваться. Формула для расчета будет выглядеть так:

Коэффициент жесткости при параллельном соединении пружин

Какова жесткость системы из двух пружин, жесткости которых k1 = 100 Н/м, k2 = 200 Н/м, соединенных: а) параллельно; б) последовательно?

а) Рассмотрим параллельное соединение пружин.

При параллельном соединении пружин общая жесткость

k = k₁ + k₂ = 100 + 200 = 300 Н/м

б) Рассмотрим последовательное соединение пружин.

При последовательном соединении общая жесткость двух пружин

Не забудь при расчете жесткости при последовательном соединении в конце перевернуть дробь.

Оцените статью
Анемометры
Добавить комментарий