Магнитный поток и электромагнитная индукция: физические формулы

Магнитный поток и электромагнитная индукция: физические формулы Анемометр
Содержание
  1. Магнитный поток
  2. Содержание
  3. Единицы измерения
  4. Измерительные приборы
  5. Теорема гаусса для магнитной индукции
  6. Квантование магнитного потока
  7. См. также
  8. Ссылки
  9. Магнитный поток
  10. Что такое магнитный поток
  11. В чем измеряется, обозначение и размерность
  12. От чего зависит величина основного магнитного потока
  13. Чему равен магнитный поток, как найти
  14. Скорость изменения магнитного потока через контур
  15. Какой формулой определяется величина магнитного потока
  16. Связь магнитного потока и работы сил магнитного поля
  17. Формула магнитного потока
  18. Что такое магнитный поток
  19. Единицы измерения
  20. Измерительные приборы
  21. Теорема гаусса для магнитной индукции
  22. Квантование магнитного потока
  23. Постоянные магниты
  24. Электромагниты
  25. Электромагнитная индукция
  26. Правило правой руки
  27. Магнитный поток: формула
  28. Формула скорости изменения магнитного потока
  29. Видео
  30. Скорость изменения магнитного потока через контур
  31. Какой формулой определяется величина магнитного потока
  32. Связь магнитного потока и работы сил магнитного поля
  33. Формула магнитного потока
  34. Что такое магнитный поток
  35. Единицы измерения
  36. Измерительные приборы
  37. Теорема гаусса для магнитной индукции
  38. Квантование магнитного потока
  39. Постоянные магниты
  40. Электромагниты
  41. Электромагнитная индукция
  42. Правило правой руки
  43. Магнитный поток: формула
  44. Формула скорости изменения магнитного потока
  45. Видео
  46. Теорема гаусса для магнитной индукции
  47. Квантование магнитного потока
  48. См. также
  49. Ссылки
  50. Магнитный поток
  51. Что такое магнитный поток
  52. В чем измеряется, обозначение и размерность
  53. От чего зависит величина основного магнитного потока
  54. Чему равен магнитный поток, как найти
  55. Скорость изменения магнитного потока через контур
  56. Какой формулой определяется величина магнитного потока
  57. Связь магнитного потока и работы сил магнитного поля
  58. Формула магнитного потока
  59. Что такое магнитный поток
  60. Единицы измерения
  61. Измерительные приборы
  62. Теорема гаусса для магнитной индукции
  63. Квантование магнитного потока
  64. Постоянные магниты
  65. Электромагниты
  66. Электромагнитная индукция
  67. Правило правой руки
  68. Магнитный поток: формула
  69. Формула скорости изменения магнитного потока
  70. Видео

Магнитный поток

Классическая электродинамика
Магнитный поток и электромагнитная индукция: физические формулы
Электричество · Магнетизм

Магнитный поток — физическая величина, равная произведению модуля вектора магнитной индукции B → <displaystyle <vec >> Магнитный поток и электромагнитная индукция: физические формулына площадь S и косинус угла α между векторами B → <displaystyle <vec >> Магнитный поток и электромагнитная индукция: физические формулыи нормалью n <displaystyle mathbf > Магнитный поток и электромагнитная индукция: физические формулы. Поток Φ <displaystyle Phi > Магнитный поток и электромагнитная индукция: физические формулыкак интеграл вектора магнитной индукции B → <displaystyle <vec >> Магнитный поток и электромагнитная индукция: физические формулычерез конечную поверхность S определяется через интеграл по поверхности:

Φ = ∬ S B ⋅ d S <displaystyle Phi =iint limits _mathbf cdot <rm >mathbf > Магнитный поток и электромагнитная индукция: физические формулы.

При этом векторный элемент dS площади поверхности S определяется как

d S = d S ⋅ n <displaystyle <rm >mathbf =<rm >Scdot mathbf > Магнитный поток и электромагнитная индукция: физические формулы,

где n <displaystyle mathbf > Магнитный поток и электромагнитная индукция: физические формулы— единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение магнитной индукции B на вектор площади ΔS :

Φ = ( B ⋅ Δ S ) = B ⋅ Δ S ⋅ cos ⁡ α <displaystyle Phi =(mathbf cdot Delta mathbf )=Bcdot Delta Scdot cos alpha > Магнитный поток и электромагнитная индукция: физические формулы,

где α — угол между вектором магнитной индукции и нормалью к плоскости S .

Магнитный поток Φ через контур L также можно выразить через циркуляцию векторного потенциала A магнитного поля по этому контуру:

Φ = ∮ L ⁡ A ⋅ d l <displaystyle Phi =oint limits _mathbf cdot mathbf

> Магнитный поток и электромагнитная индукция: физические формулы.

Содержание

Единицы измерения

В СИ единицей магнитного потока является вебер (Вб, размерность — Вб = В·с = кг·м²·с -2 ·А -1 ), в системе СГС — максвелл (Мкс, 1 Вб = 10 8 Мкс ).

Измерительные приборы

Прибор для измерения магнитных потоков называется флюксметром (от лат. fluxus — «течение» и греч. metron — мера) или веберметром.

Теорема гаусса для магнитной индукции

В соответствии с теоремой Гаусса для магнитной индукции поток вектора магнитной индукции ( B ) через любую замкнутую поверхность S равен нулю:

∮ S ⁡ B ⋅ d S = 0 <displaystyle oint limits _mathbf cdot <text>mathbf =0> Магнитный поток и электромагнитная индукция: физические формулы.

Или, в дифференциальной форме — дивергенция магнитного поля B равна нулю:

div B = 0 <displaystyle operatorname

,mathbf

=0> Магнитный поток и электромагнитная индукция: физические формулы.

Это означает, что в классической электродинамике невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле.

Квантование магнитного потока

Значения магнитного потока Φ , проходящего через неодносвязный сверхпроводник (например, сверхпроводящее кольцо), дискретны и кратны кванту потока:

Φ 0 = h 2 e = 2.067833758 × 10 − 15 <displaystyle Phi _<0>=<frac <2e>>=2.067833758times 10^<-15>> Магнитный поток и электромагнитная индукция: физические формулыВб (СИ); Φ 0 = h c 2 e = 2 , 067833636 × 10 − 7 <displaystyle Phi _<0>=<frac <2e>>=2,067833636times 10^<-7>> Магнитный поток и электромагнитная индукция: физические формулыГаусс·см 2 (СГС).

Экспериментально квантование магнитного потока было обнаружено в 1961 году.

См. также

Ссылки

Что такое anemometers.ru Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. anemometers.ru является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).

Источник

Магнитный поток

Что такое магнитный поток

Магнитный поток — величина, характеризующая число магнитных силовых линий поля, проходящих через замкнутый контур.

Майкл Фарадей опытным путем пришел к выводу, что при любом соприкосновении проводника и магнитных линий по проводнику проходит заряд (triangle Q) . Этот заряд прямо пропорционален количеству ( triangle Ф) пересеченных линий и обратно пропорционален сопротивлению R контура. Пересечение линий вызывается или движением проводника, или изменением поля.
Позже, представляя замкнутый контур, в котором действует ЭДС индукции, Джеймс Клерк Максвелл подсчитывал количество силовых линий (triangle Ф) , пересекаемых контуром за время (triangle t) . Ф он при этом отождествлял с магнитным потоком сквозь всю поверхность.

В чем измеряется, обозначение и размерность

Единица измерения — вебер, сокращенно Вб. Он обозначается буквой Ф.

Размерность — выражение, демонстрирующее связь физической величины с другими величинами данной системы, разложение ее на сомножители из других величин.

Размерность магнитного потока — (В times с = кг times м^ <2>times с^ <-2>times А^<-1>.)

От чего зависит величина основного магнитного потока

Его можно изменить следующими способами:

  • изменив площадь контура;
  • изменив угол его наклона;
  • изменив магнитное напряжение.

Чему равен магнитный поток, как найти

Магнитный поток в случае однородного магнитного поля равен произведению модуля индукции В этого поля, площади S плоской поверхности, через которую вычисляется поток, и косинуса угла (varphi) между направлением индукции В и нормали к данной поверхности.

Нормаль — перпендикуляр к плоскости контура.

Также поток можно вычислить через индуктивность, которая пропорциональна отношению полного, или суммарного потока к силе тока.

Обозначение суммарного потока — буква ( psi) . Он равен сумме потоков, проходящих через всю поверхность. И в простом случае, где рассматриваются одинаковые потоки, проходящие через одинаковые витки катушки, и в случаях, когда поверхность имеет очень сложную форму, эта пропорциональность сохраняется.

Скорость изменения магнитного потока через контур

Закон электромагнитной индукции Фарадея в интегральном виде выглядит следующим образом:

(;underset С<oint;>;(overrightarrow<е;>times;doverrightarrow l) = — frac<1>frac

int underset S<int;>;(overrightarrow times doverrightarrow).)

Интеграл в левой части уравнения — циркуляция вектора (overrightarrow<е;>) по замкнутому контуру С, это отражает знак интеграла, записанный с кругом. В правой части — скорость изменения потока Ф, который вычисляется как интеграл по поверхности S, «натянутой» на С.

Интеграл — целое, определяемое как сумма его бесконечно малых частей.

Если считать изменение потока в замкнутом контуре равномерным, то закон Фарадея примет следующий вид:

Какой формулой определяется величина магнитного потока

Математически величину Ф описывают двумя формулами:

(Ф;=;sum_<triangle S>;;Btriangle S = B times S times cosvarphi. )

Связь магнитного потока и работы сил магнитного поля

Герман Гельмгольц первым связал закон Фарадея и закон сохранения энергии. Возьмем проводник с током I, находящийся внутри однородного магнитного поля, которое перпендикулярно плоскости контура, и перемещающийся в нем. Под влиянием силы Ампера F проводник перемещается на отрезок dx. Сила F производит работу dA = IdФ.

Работу источника тока можно измерить, сложив работу на джоулеву теплоту и работу по перемещению проводника внутри поля:

Источник

Формула магнитного потока

Однородное магнитное поле (МП), существующее в некотором объёме, называется так, потому что оно одинаково во всех его точках. Если рассмотреть определённую плоскость, расположенную под прямым углом к магнитным линиям поля, то количество линий, пронизывающих её, можно вычислить. Поток магнитной индукции, формула которого выведена немецким физиком Вильгельмом Вебером, является искомой величиной.

Магнитный поток и электромагнитная индукция: физические формулы

Что такое магнитный поток

Проводя опыты и работая в сфере магнитных явлений, Вебер дал определение магнитному потоку. Он охарактеризовал его, как меру силы и протяжённости МП. Это одна из физических величин, которую можно найти, зная модуль вектора магнитной индукции В→ (ВМИ). Знать также нужно площадь пересекаемой поверхности и синус угла между ВМИ и нормалью к плоскости.

Единицы измерения

Магнитный поток обозначают буквой Φ, измеряется в веберах (Вб). Единица названа по фамилии учёного. Так, 1 Вб характеризует магнитный поток Φ, создаваемый магнитным полем, имеющим индукцию в одну теслу (1 Тл), пронизывающий плоскость площадью в один квадратный метр (1 м²), с учётом того, что эта поверхность расположена под прямым углом к ВМИ (В→).

Измерительные приборы

Магнитные потоки, определимые с помощью специальных приборов – флюксметров, измеряются и в лабораторных, и в полевых условиях. Приборы ещё называют веберметрами. Особенностью такого измерительного аппарата магнитоэлектрической системы (МЭС) является то, что ток подводится к перемещающейся бескаркасной рамке через спирали, не имеющие момента противодействия (безмоментные).

Внимание! В тот момент, когда ток отсутствует, указатель прибора не имеет фиксированного положения в пределах шкалы.

Магнитный поток и электромагнитная индукция: физические формулы

Прибор состоит из следующих деталей, отмеченных на рис. выше:

  • испытуемый постоянный магнит – 1;
  • рамка измерительная – 2;
  • рамка прибора – 3;
  • магнит прибора – 4;
  • рамка корректирующего устройства – 5;
  • головка регулировки корректирующей рамки – 6;
  • переключатель «работа – коррекция» – 7.

Флюксметр не может измерять слабые МП из-за низкой чувствительности.

Теорема гаусса для магнитной индукции

Великий немецкий учёный Карл Гаусс, который отличился в математике, физике и астрономии, вывел закон (теорему) в области магнетизма. Он доказал, что, в отличие от электрического поля, создаваемого электрическими зарядами, МП не создаётся зарядами магнитными. Их попросту не существует в классической электродинамике.

Информация.Теорема, которую вывел Гаусс, принадлежит к главным законам электродинамики и является частью системы уравнений Максвелла. Она описывает соотношение между потоком напряжённости электрополя, пронизывающего замкнутую произвольную поверхность, и суммой зарядов, помещающихся в очерченном этой поверхностью объёме. Сумма выражена в алгебраической форме.

В отношении магнитной индукции поток В→, проходящий через замкнутую поверхность S, имеет нулевое значение.

Магнитный поток и электромагнитная индукция: физические формулы

Квантование магнитного потока

В 1961 году практически было установлено, что, если направить магнитный поток через закольцованный сверхпроводник, по которому протекает электричество, то величина Φ будет кратной кванту потока Φ0 = h/2e = 2.067833758*10-15Вб. Это значение в системе СИ.

Такой эксперимент выполнили американцы Дивер и Фейрбенк. Они выполнили квантование, используя трубку полой конструкции, пропуская по ней круговые токи сверхпроводящей природы. Их результат квантовой размерности оказался в два раза меньше. Это было обусловлено тем, что электроны в сверхпроводящей ситуации разбивались на пары. Частицы образовывали двойки с зарядом 2е. Именно движение этих пар составляет природу сверхпроводящего тока.

К сведению. Сверхпроводники – это материалы, у которых при понижении температуры до определённого значения резко падает сопротивление. Оно практически равно нулю, тогда можно говорить о сверхпроводящих свойствах. Металлы, которые являются отличными проводниками, – золото, серебро, платина, не приобретают сверхпроводящих способностей в таких условиях.

Магнитный поток и электромагнитная индукция: физические формулы

Постоянные магниты

Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.

Постоянные магниты можно классифицировать по следующим критериям:

  • материал, из которого изготовлен магнит;
  • форма;
  • сфера использования.

Магниты с постоянными полюсами изготавливаются из различных материалов:

  • ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
  • редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).

Форма магнитов самая различная:

  • цилиндрическая (прямоугольная);
  • подковообразная;
  • кольцеобразная;
  • дискообразная.

Важно! В зависимости от формы изменяется месторасположение полюсов, соответственно, и направление магнитных линий у поля.

Магнитный поток и электромагнитная индукция: физические формулы

Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:

  • МРТ – медицинский прибор для диагностики человеческого организма;
  • приводы жёстких дисков в современных компьютерах;
  • в радиотехнике, при изготовлении динамиков;
  • производство декоративных украшений с применением магнитов на полимерной основе.

В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.

Электромагниты

Следующей разновидностью устройства, предназначенного для создания МП, является электромагнит. При протекании через его обмотку электрического тока сердечник становится магнитом. Следственно, электромагнит состоит из следующих частей:

Это своеобразная катушка индуктивности, называемая соленоидом.

Сердечник может быть выполнен из ферримагнитного материала или листового набора электротехнической стали.

Обмотка намотана проводом из алюминия или меди, покрытого изоляцией.

Электромагниты (ЭМ) можно классифицировать по следующим параметрам:

  • магниты постоянного тока – нейтральные;
  • магниты постоянного тока – поляризованные;
  • устройства переменного тока.

Нейтральные ЭМ – создание магнитного потока происходит так, что величина притяжения увеличивается с повышением силы тока и не подчиняется направлению движения электронов.

Поляризованные ЭМ в своём составе содержат:

  • рабочую обмотку – для создания рабочего Φ;
  • постоянный магнит – для наведения поляризующего Φ.

Обмотки ЭМ переменного тока питаются синусоидальным током, поэтому их Φ меняется по периодическому закону.

Магнитный поток и электромагнитная индукция: физические формулы

Электромагнитная индукция

Майкл Фарадей открыл явление, определённое как электромагнитная индукция. В 1831 году было замечено, что, если изменять магнитный поток Φ, который пронизывает контур, выполненный из замкнутого проводника, то в нём индуцируется электроток.

Внимание! Величина электродвижущей силы (ЭДС), возникающей при этом, не зависит от причины изменения Φ, а пропорционально связана с изменением его скорости через поверхность в рамках контура.

Магнитный поток и электромагнитная индукция: физические формулы

Правило правой руки

Определить, в каком направлении будет двигаться индукционный ток, помогает «правило правой руки». Расшифровка такого метода, придуманного для запоминания, состоит в следующем:

  • правая рука помещается в МП так, чтобы ладонь располагалась под углом 90° к магнитным силовым линиям;
  • большой палец направляется в сторону движения проводника.

Индукционный ток движется туда, куда смотрят четыре пальца руки.

Магнитный поток и электромагнитная индукция: физические формулы

Магнитный поток: формула

Определение величины Φ возможно с помощью математического вычисления. Формула магнитного потока имеет вид:

где:

  • B – вектор магнитной индукции (ВМИ);
  • S – площадь контура;
  • cos α – угол между ВМИ и перпендикуляром (нормалью) к пересекаемой поверхности.

Здесь, В – это модуль вектора магнитной индукции.

Магнитный поток и электромагнитная индукция: физические формулы

Формула скорости изменения магнитного потока

По скорости изменений магнитных потоков через контур определяют величину ЭДС, индуцируемой в контуре. Сама скорость Ei будет определяться по формуле:

где:

  • ∆ Φ = Φ2 – Φ1 – изменение потока (Вб);
  • ∆t – изменение времени (с).

Единица измерения скорости – Вб/с.

Открытие Фарадеем закона электромагнитной индукции позволило использовать работу магнитного потока для создания электрических машин: генераторов и двигателей, как постоянного, так и переменного тока. В них, в зависимости от конструкции, или постоянный магнит изменяет своё положение относительно рамки, или рамка вращается в МП. Так или иначе, возникает ЭДС, её значение зависит от Φ.

Видео

Источник

Скорость изменения магнитного потока через контур

Закон электромагнитной индукции Фарадея в интегральном виде выглядит следующим образом:

(;underset С<oint;>;(overrightarrow<е;>times;doverrightarrow l) = — frac<1>frac

int underset S<int;>;(overrightarrow times doverrightarrow).)

Интеграл в левой части уравнения — циркуляция вектора (overrightarrow<е;>) по замкнутому контуру С, это отражает знак интеграла, записанный с кругом. В правой части — скорость изменения потока Ф, который вычисляется как интеграл по поверхности S, «натянутой» на С.

Интеграл — целое, определяемое как сумма его бесконечно малых частей.

Если считать изменение потока в замкнутом контуре равномерным, то закон Фарадея примет следующий вид:

Какой формулой определяется величина магнитного потока

Математически величину Ф описывают двумя формулами:

(Ф;=;sum_<triangle S>;;Btriangle S = B times S times cosvarphi. )

Связь магнитного потока и работы сил магнитного поля

Герман Гельмгольц первым связал закон Фарадея и закон сохранения энергии. Возьмем проводник с током I, находящийся внутри однородного магнитного поля, которое перпендикулярно плоскости контура, и перемещающийся в нем. Под влиянием силы Ампера F проводник перемещается на отрезок dx. Сила F производит работу dA = IdФ.

Работу источника тока можно измерить, сложив работу на джоулеву теплоту и работу по перемещению проводника внутри поля:

Источник

Формула магнитного потока

Однородное магнитное поле (МП), существующее в некотором объёме, называется так, потому что оно одинаково во всех его точках. Если рассмотреть определённую плоскость, расположенную под прямым углом к магнитным линиям поля, то количество линий, пронизывающих её, можно вычислить. Поток магнитной индукции, формула которого выведена немецким физиком Вильгельмом Вебером, является искомой величиной.

Магнитный поток и электромагнитная индукция: физические формулы

Что такое магнитный поток

Проводя опыты и работая в сфере магнитных явлений, Вебер дал определение магнитному потоку. Он охарактеризовал его, как меру силы и протяжённости МП. Это одна из физических величин, которую можно найти, зная модуль вектора магнитной индукции В→ (ВМИ). Знать также нужно площадь пересекаемой поверхности и синус угла между ВМИ и нормалью к плоскости.

Единицы измерения

Магнитный поток обозначают буквой Φ, измеряется в веберах (Вб). Единица названа по фамилии учёного. Так, 1 Вб характеризует магнитный поток Φ, создаваемый магнитным полем, имеющим индукцию в одну теслу (1 Тл), пронизывающий плоскость площадью в один квадратный метр (1 м²), с учётом того, что эта поверхность расположена под прямым углом к ВМИ (В→).

Измерительные приборы

Магнитные потоки, определимые с помощью специальных приборов – флюксметров, измеряются и в лабораторных, и в полевых условиях. Приборы ещё называют веберметрами. Особенностью такого измерительного аппарата магнитоэлектрической системы (МЭС) является то, что ток подводится к перемещающейся бескаркасной рамке через спирали, не имеющие момента противодействия (безмоментные).

Внимание! В тот момент, когда ток отсутствует, указатель прибора не имеет фиксированного положения в пределах шкалы.

Магнитный поток и электромагнитная индукция: физические формулы

Прибор состоит из следующих деталей, отмеченных на рис. выше:

  • испытуемый постоянный магнит – 1;
  • рамка измерительная – 2;
  • рамка прибора – 3;
  • магнит прибора – 4;
  • рамка корректирующего устройства – 5;
  • головка регулировки корректирующей рамки – 6;
  • переключатель «работа – коррекция» – 7.

Флюксметр не может измерять слабые МП из-за низкой чувствительности.

Теорема гаусса для магнитной индукции

Великий немецкий учёный Карл Гаусс, который отличился в математике, физике и астрономии, вывел закон (теорему) в области магнетизма. Он доказал, что, в отличие от электрического поля, создаваемого электрическими зарядами, МП не создаётся зарядами магнитными. Их попросту не существует в классической электродинамике.

Информация.Теорема, которую вывел Гаусс, принадлежит к главным законам электродинамики и является частью системы уравнений Максвелла. Она описывает соотношение между потоком напряжённости электрополя, пронизывающего замкнутую произвольную поверхность, и суммой зарядов, помещающихся в очерченном этой поверхностью объёме. Сумма выражена в алгебраической форме.

В отношении магнитной индукции поток В→, проходящий через замкнутую поверхность S, имеет нулевое значение.

Магнитный поток и электромагнитная индукция: физические формулы

Квантование магнитного потока

В 1961 году практически было установлено, что, если направить магнитный поток через закольцованный сверхпроводник, по которому протекает электричество, то величина Φ будет кратной кванту потока Φ0 = h/2e = 2.067833758*10-15Вб. Это значение в системе СИ.

Такой эксперимент выполнили американцы Дивер и Фейрбенк. Они выполнили квантование, используя трубку полой конструкции, пропуская по ней круговые токи сверхпроводящей природы. Их результат квантовой размерности оказался в два раза меньше. Это было обусловлено тем, что электроны в сверхпроводящей ситуации разбивались на пары. Частицы образовывали двойки с зарядом 2е. Именно движение этих пар составляет природу сверхпроводящего тока.

К сведению. Сверхпроводники – это материалы, у которых при понижении температуры до определённого значения резко падает сопротивление. Оно практически равно нулю, тогда можно говорить о сверхпроводящих свойствах. Металлы, которые являются отличными проводниками, – золото, серебро, платина, не приобретают сверхпроводящих способностей в таких условиях.

Магнитный поток и электромагнитная индукция: физические формулы

Постоянные магниты

Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.

Постоянные магниты можно классифицировать по следующим критериям:

  • материал, из которого изготовлен магнит;
  • форма;
  • сфера использования.

Магниты с постоянными полюсами изготавливаются из различных материалов:

  • ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
  • редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).

Форма магнитов самая различная:

  • цилиндрическая (прямоугольная);
  • подковообразная;
  • кольцеобразная;
  • дискообразная.

Важно! В зависимости от формы изменяется месторасположение полюсов, соответственно, и направление магнитных линий у поля.

Магнитный поток и электромагнитная индукция: физические формулы

Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:

  • МРТ – медицинский прибор для диагностики человеческого организма;
  • приводы жёстких дисков в современных компьютерах;
  • в радиотехнике, при изготовлении динамиков;
  • производство декоративных украшений с применением магнитов на полимерной основе.

В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.

Электромагниты

Следующей разновидностью устройства, предназначенного для создания МП, является электромагнит. При протекании через его обмотку электрического тока сердечник становится магнитом. Следственно, электромагнит состоит из следующих частей:

Это своеобразная катушка индуктивности, называемая соленоидом.

Сердечник может быть выполнен из ферримагнитного материала или листового набора электротехнической стали.

Обмотка намотана проводом из алюминия или меди, покрытого изоляцией.

Электромагниты (ЭМ) можно классифицировать по следующим параметрам:

  • магниты постоянного тока – нейтральные;
  • магниты постоянного тока – поляризованные;
  • устройства переменного тока.

Нейтральные ЭМ – создание магнитного потока происходит так, что величина притяжения увеличивается с повышением силы тока и не подчиняется направлению движения электронов.

Поляризованные ЭМ в своём составе содержат:

  • рабочую обмотку – для создания рабочего Φ;
  • постоянный магнит – для наведения поляризующего Φ.

Обмотки ЭМ переменного тока питаются синусоидальным током, поэтому их Φ меняется по периодическому закону.

Магнитный поток и электромагнитная индукция: физические формулы

Электромагнитная индукция

Майкл Фарадей открыл явление, определённое как электромагнитная индукция. В 1831 году было замечено, что, если изменять магнитный поток Φ, который пронизывает контур, выполненный из замкнутого проводника, то в нём индуцируется электроток.

Внимание! Величина электродвижущей силы (ЭДС), возникающей при этом, не зависит от причины изменения Φ, а пропорционально связана с изменением его скорости через поверхность в рамках контура.

Магнитный поток и электромагнитная индукция: физические формулы

Правило правой руки

Определить, в каком направлении будет двигаться индукционный ток, помогает «правило правой руки». Расшифровка такого метода, придуманного для запоминания, состоит в следующем:

  • правая рука помещается в МП так, чтобы ладонь располагалась под углом 90° к магнитным силовым линиям;
  • большой палец направляется в сторону движения проводника.

Индукционный ток движется туда, куда смотрят четыре пальца руки.

Магнитный поток и электромагнитная индукция: физические формулы

Магнитный поток: формула

Определение величины Φ возможно с помощью математического вычисления. Формула магнитного потока имеет вид:

где:

  • B – вектор магнитной индукции (ВМИ);
  • S – площадь контура;
  • cos α – угол между ВМИ и перпендикуляром (нормалью) к пересекаемой поверхности.

Здесь, В – это модуль вектора магнитной индукции.

Магнитный поток и электромагнитная индукция: физические формулы

Формула скорости изменения магнитного потока

По скорости изменений магнитных потоков через контур определяют величину ЭДС, индуцируемой в контуре. Сама скорость Ei будет определяться по формуле:

где:

  • ∆ Φ = Φ2 – Φ1 – изменение потока (Вб);
  • ∆t – изменение времени (с).

Единица измерения скорости – Вб/с.

Открытие Фарадеем закона электромагнитной индукции позволило использовать работу магнитного потока для создания электрических машин: генераторов и двигателей, как постоянного, так и переменного тока. В них, в зависимости от конструкции, или постоянный магнит изменяет своё положение относительно рамки, или рамка вращается в МП. Так или иначе, возникает ЭДС, её значение зависит от Φ.

Видео

Источник

Теорема гаусса для магнитной индукции

В соответствии с теоремой Гаусса для магнитной индукции поток вектора магнитной индукции ( B ) через любую замкнутую поверхность S равен нулю:

∮ S ⁡ B ⋅ d S = 0 <displaystyle oint limits _mathbf cdot <text>mathbf =0> Магнитный поток и электромагнитная индукция: физические формулы.

Или, в дифференциальной форме — дивергенция магнитного поля B равна нулю:

div B = 0 <displaystyle operatorname

,mathbf

=0> Магнитный поток и электромагнитная индукция: физические формулы.

Это означает, что в классической электродинамике невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле.

Квантование магнитного потока

Значения магнитного потока Φ , проходящего через неодносвязный сверхпроводник (например, сверхпроводящее кольцо), дискретны и кратны кванту потока:

Φ 0 = h 2 e = 2.067833758 × 10 − 15 <displaystyle Phi _<0>=<frac <2e>>=2.067833758times 10^<-15>> Магнитный поток и электромагнитная индукция: физические формулыВб (СИ); Φ 0 = h c 2 e = 2 , 067833636 × 10 − 7 <displaystyle Phi _<0>=<frac <2e>>=2,067833636times 10^<-7>> Магнитный поток и электромагнитная индукция: физические формулыГаусс·см 2 (СГС).

Экспериментально квантование магнитного потока было обнаружено в 1961 году.

См. также

Ссылки

Что такое anemometers.ru Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. anemometers.ru является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).

Источник

Магнитный поток

Что такое магнитный поток

Магнитный поток — величина, характеризующая число магнитных силовых линий поля, проходящих через замкнутый контур.

Майкл Фарадей опытным путем пришел к выводу, что при любом соприкосновении проводника и магнитных линий по проводнику проходит заряд (triangle Q) . Этот заряд прямо пропорционален количеству ( triangle Ф) пересеченных линий и обратно пропорционален сопротивлению R контура. Пересечение линий вызывается или движением проводника, или изменением поля.
Позже, представляя замкнутый контур, в котором действует ЭДС индукции, Джеймс Клерк Максвелл подсчитывал количество силовых линий (triangle Ф) , пересекаемых контуром за время (triangle t) . Ф он при этом отождествлял с магнитным потоком сквозь всю поверхность.

В чем измеряется, обозначение и размерность

Единица измерения — вебер, сокращенно Вб. Он обозначается буквой Ф.

Размерность — выражение, демонстрирующее связь физической величины с другими величинами данной системы, разложение ее на сомножители из других величин.

Размерность магнитного потока — (В times с = кг times м^ <2>times с^ <-2>times А^<-1>.)

От чего зависит величина основного магнитного потока

Его можно изменить следующими способами:

  • изменив площадь контура;
  • изменив угол его наклона;
  • изменив магнитное напряжение.

Чему равен магнитный поток, как найти

Магнитный поток в случае однородного магнитного поля равен произведению модуля индукции В этого поля, площади S плоской поверхности, через которую вычисляется поток, и косинуса угла (varphi) между направлением индукции В и нормали к данной поверхности.

Нормаль — перпендикуляр к плоскости контура.

Также поток можно вычислить через индуктивность, которая пропорциональна отношению полного, или суммарного потока к силе тока.

Обозначение суммарного потока — буква ( psi) . Он равен сумме потоков, проходящих через всю поверхность. И в простом случае, где рассматриваются одинаковые потоки, проходящие через одинаковые витки катушки, и в случаях, когда поверхность имеет очень сложную форму, эта пропорциональность сохраняется.

Скорость изменения магнитного потока через контур

Закон электромагнитной индукции Фарадея в интегральном виде выглядит следующим образом:

(;underset С<oint;>;(overrightarrow<е;>times;doverrightarrow l) = — frac<1>frac

int underset S<int;>;(overrightarrow times doverrightarrow).)

Интеграл в левой части уравнения — циркуляция вектора (overrightarrow<е;>) по замкнутому контуру С, это отражает знак интеграла, записанный с кругом. В правой части — скорость изменения потока Ф, который вычисляется как интеграл по поверхности S, «натянутой» на С.

Интеграл — целое, определяемое как сумма его бесконечно малых частей.

Если считать изменение потока в замкнутом контуре равномерным, то закон Фарадея примет следующий вид:

Какой формулой определяется величина магнитного потока

Математически величину Ф описывают двумя формулами:

(Ф;=;sum_<triangle S>;;Btriangle S = B times S times cosvarphi. )

Связь магнитного потока и работы сил магнитного поля

Герман Гельмгольц первым связал закон Фарадея и закон сохранения энергии. Возьмем проводник с током I, находящийся внутри однородного магнитного поля, которое перпендикулярно плоскости контура, и перемещающийся в нем. Под влиянием силы Ампера F проводник перемещается на отрезок dx. Сила F производит работу dA = IdФ.

Работу источника тока можно измерить, сложив работу на джоулеву теплоту и работу по перемещению проводника внутри поля:

Источник

Формула магнитного потока

Однородное магнитное поле (МП), существующее в некотором объёме, называется так, потому что оно одинаково во всех его точках. Если рассмотреть определённую плоскость, расположенную под прямым углом к магнитным линиям поля, то количество линий, пронизывающих её, можно вычислить. Поток магнитной индукции, формула которого выведена немецким физиком Вильгельмом Вебером, является искомой величиной.

Магнитный поток и электромагнитная индукция: физические формулы

Что такое магнитный поток

Проводя опыты и работая в сфере магнитных явлений, Вебер дал определение магнитному потоку. Он охарактеризовал его, как меру силы и протяжённости МП. Это одна из физических величин, которую можно найти, зная модуль вектора магнитной индукции В→ (ВМИ). Знать также нужно площадь пересекаемой поверхности и синус угла между ВМИ и нормалью к плоскости.

Единицы измерения

Магнитный поток обозначают буквой Φ, измеряется в веберах (Вб). Единица названа по фамилии учёного. Так, 1 Вб характеризует магнитный поток Φ, создаваемый магнитным полем, имеющим индукцию в одну теслу (1 Тл), пронизывающий плоскость площадью в один квадратный метр (1 м²), с учётом того, что эта поверхность расположена под прямым углом к ВМИ (В→).

Измерительные приборы

Магнитные потоки, определимые с помощью специальных приборов – флюксметров, измеряются и в лабораторных, и в полевых условиях. Приборы ещё называют веберметрами. Особенностью такого измерительного аппарата магнитоэлектрической системы (МЭС) является то, что ток подводится к перемещающейся бескаркасной рамке через спирали, не имеющие момента противодействия (безмоментные).

Внимание! В тот момент, когда ток отсутствует, указатель прибора не имеет фиксированного положения в пределах шкалы.

Магнитный поток и электромагнитная индукция: физические формулы

Прибор состоит из следующих деталей, отмеченных на рис. выше:

  • испытуемый постоянный магнит – 1;
  • рамка измерительная – 2;
  • рамка прибора – 3;
  • магнит прибора – 4;
  • рамка корректирующего устройства – 5;
  • головка регулировки корректирующей рамки – 6;
  • переключатель «работа – коррекция» – 7.

Флюксметр не может измерять слабые МП из-за низкой чувствительности.

Теорема гаусса для магнитной индукции

Великий немецкий учёный Карл Гаусс, который отличился в математике, физике и астрономии, вывел закон (теорему) в области магнетизма. Он доказал, что, в отличие от электрического поля, создаваемого электрическими зарядами, МП не создаётся зарядами магнитными. Их попросту не существует в классической электродинамике.

Информация.Теорема, которую вывел Гаусс, принадлежит к главным законам электродинамики и является частью системы уравнений Максвелла. Она описывает соотношение между потоком напряжённости электрополя, пронизывающего замкнутую произвольную поверхность, и суммой зарядов, помещающихся в очерченном этой поверхностью объёме. Сумма выражена в алгебраической форме.

В отношении магнитной индукции поток В→, проходящий через замкнутую поверхность S, имеет нулевое значение.

Магнитный поток и электромагнитная индукция: физические формулы

Квантование магнитного потока

В 1961 году практически было установлено, что, если направить магнитный поток через закольцованный сверхпроводник, по которому протекает электричество, то величина Φ будет кратной кванту потока Φ0 = h/2e = 2.067833758*10-15Вб. Это значение в системе СИ.

Такой эксперимент выполнили американцы Дивер и Фейрбенк. Они выполнили квантование, используя трубку полой конструкции, пропуская по ней круговые токи сверхпроводящей природы. Их результат квантовой размерности оказался в два раза меньше. Это было обусловлено тем, что электроны в сверхпроводящей ситуации разбивались на пары. Частицы образовывали двойки с зарядом 2е. Именно движение этих пар составляет природу сверхпроводящего тока.

К сведению. Сверхпроводники – это материалы, у которых при понижении температуры до определённого значения резко падает сопротивление. Оно практически равно нулю, тогда можно говорить о сверхпроводящих свойствах. Металлы, которые являются отличными проводниками, – золото, серебро, платина, не приобретают сверхпроводящих способностей в таких условиях.

Магнитный поток и электромагнитная индукция: физические формулы

Постоянные магниты

Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.

Постоянные магниты можно классифицировать по следующим критериям:

  • материал, из которого изготовлен магнит;
  • форма;
  • сфера использования.

Магниты с постоянными полюсами изготавливаются из различных материалов:

  • ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
  • редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).

Форма магнитов самая различная:

  • цилиндрическая (прямоугольная);
  • подковообразная;
  • кольцеобразная;
  • дискообразная.

Важно! В зависимости от формы изменяется месторасположение полюсов, соответственно, и направление магнитных линий у поля.

Магнитный поток и электромагнитная индукция: физические формулы

Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:

  • МРТ – медицинский прибор для диагностики человеческого организма;
  • приводы жёстких дисков в современных компьютерах;
  • в радиотехнике, при изготовлении динамиков;
  • производство декоративных украшений с применением магнитов на полимерной основе.

В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.

Электромагниты

Следующей разновидностью устройства, предназначенного для создания МП, является электромагнит. При протекании через его обмотку электрического тока сердечник становится магнитом. Следственно, электромагнит состоит из следующих частей:

Это своеобразная катушка индуктивности, называемая соленоидом.

Сердечник может быть выполнен из ферримагнитного материала или листового набора электротехнической стали.

Обмотка намотана проводом из алюминия или меди, покрытого изоляцией.

Электромагниты (ЭМ) можно классифицировать по следующим параметрам:

  • магниты постоянного тока – нейтральные;
  • магниты постоянного тока – поляризованные;
  • устройства переменного тока.

Нейтральные ЭМ – создание магнитного потока происходит так, что величина притяжения увеличивается с повышением силы тока и не подчиняется направлению движения электронов.

Поляризованные ЭМ в своём составе содержат:

  • рабочую обмотку – для создания рабочего Φ;
  • постоянный магнит – для наведения поляризующего Φ.

Обмотки ЭМ переменного тока питаются синусоидальным током, поэтому их Φ меняется по периодическому закону.

Магнитный поток и электромагнитная индукция: физические формулы

Электромагнитная индукция

Майкл Фарадей открыл явление, определённое как электромагнитная индукция. В 1831 году было замечено, что, если изменять магнитный поток Φ, который пронизывает контур, выполненный из замкнутого проводника, то в нём индуцируется электроток.

Внимание! Величина электродвижущей силы (ЭДС), возникающей при этом, не зависит от причины изменения Φ, а пропорционально связана с изменением его скорости через поверхность в рамках контура.

Магнитный поток и электромагнитная индукция: физические формулы

Правило правой руки

Определить, в каком направлении будет двигаться индукционный ток, помогает «правило правой руки». Расшифровка такого метода, придуманного для запоминания, состоит в следующем:

  • правая рука помещается в МП так, чтобы ладонь располагалась под углом 90° к магнитным силовым линиям;
  • большой палец направляется в сторону движения проводника.

Индукционный ток движется туда, куда смотрят четыре пальца руки.

Магнитный поток и электромагнитная индукция: физические формулы

Магнитный поток: формула

Определение величины Φ возможно с помощью математического вычисления. Формула магнитного потока имеет вид:

где:

  • B – вектор магнитной индукции (ВМИ);
  • S – площадь контура;
  • cos α – угол между ВМИ и перпендикуляром (нормалью) к пересекаемой поверхности.

Здесь, В – это модуль вектора магнитной индукции.

Магнитный поток и электромагнитная индукция: физические формулы

Формула скорости изменения магнитного потока

По скорости изменений магнитных потоков через контур определяют величину ЭДС, индуцируемой в контуре. Сама скорость Ei будет определяться по формуле:

где:

  • ∆ Φ = Φ2 – Φ1 – изменение потока (Вб);
  • ∆t – изменение времени (с).

Единица измерения скорости – Вб/с.

Открытие Фарадеем закона электромагнитной индукции позволило использовать работу магнитного потока для создания электрических машин: генераторов и двигателей, как постоянного, так и переменного тока. В них, в зависимости от конструкции, или постоянный магнит изменяет своё положение относительно рамки, или рамка вращается в МП. Так или иначе, возникает ЭДС, её значение зависит от Φ.

Видео

Источник

Про анемометры:  Конвертер магнитного потока • Магнитостатика, магнетизм и электродинамика • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Оцените статью
Анемометры
Добавить комментарий