Подогреватель воздуха для компрессорной разработки и ГК “Теплоприбор”, производства КИПиА

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА Анемометр

Сенсор давления, датчик давления, преобразователь давления – в чем разница?

Очень часто приходится слышать от наших потребителей использование каждого из этих терминов с совершенно разными смысловыми посылами.

Попробуем разобраться и сформулировать определения этих терминов.

Сенсор давления – это чувствительный элемент, который определенным образом реагирует на изменение давления. Т.е. создаваемое давление непосредственно изменяет свойства сенсора  емкость, сопротивление и пр.) и таким образом, мы получаем информацию об этом давлении.

На рисунке изображена пластина с пьезорезистивными сенсорами давления

Датчик давления – это наиболее часто встречающееся и всеобъемлющее понятие. Многие специалисты к датчикам давления относят и реле давленияпрессостаты), т.е.  приборы, задача которых не выдавать значение давление, а срабатывать на Включение/ Выключение контактов при достижении определенных заданных изначально давлений. Иногда можно даже встретить специалистов, которые называют и манометры датчиками давления.

Но какое же все-таки определение датчиков давления является наиболее правильным? С нашей точки зрения датчик давления – это устройство готовое к измерению давления. Т.е. устройство содержащие в своем составе сенсор давления, имеющее корпус с возможностью монтажа в процесс и электрические выводы виде штырьков, проводов или даже специальных электрических коннекторов.

На рисунках изображены:

Cлева – датчик абсолютного давления со специальным фланцем под сварку Справа – датчик дифференциального давления, крепление датчика производится при помощи уплотнительных колец

Про анемометры:  Принцип работы газгольдера и точки контроля: как узнать, что все в порядке - ООО «Термо Лайф»

Барометр — это устройство, которое измеряет атмосферное давление. То есть давление воздуха, который давит на нас со всех сторон. Еще со школы мы знаем, что первый барометр представлял собой тарелку с ртутью, и перевернутой пробиркой в ней. Автором этого устройства был Эванджели́ста Торриче́лли — итальянский физик и математик. Снять показания ртутного барометра можно так же просто, как и показания спиртового термометра: чем давление снаружи колбы больше, тем выше столбик ртути внутри неё. Пары ртути, как известно, весьма ядовиты.

Позже, появился более безопасный прибор — барометр-анероид. В этом барометре ртуть была заменена на гофрированную коробку из тонкой жести, в которой создано разрежение. Под воздействием атмосферы, коробочка сжимается и через систему рычагов поворачивает стрелку на циферблате. Вот так выглядят эти два барометра. Слева — анероид, справа — барометр Торричелли.

Зачем нам может понадобиться барометр? Чаще всего, этот прибор используют на летательных аппаратах для определения высоты полета. Чем выше аппарат поднимается над уровнем моря, тем меньшее давление испытывает бортовой барометр. Зная эту зависимость, легко определить высоту.

Другой распространенный вариант использования — самодельная погодная станция. В этом случае мы можем использовать известные зависимости грядущей погоды от атмосферного давления. Помимо барометра, на такие станции ставят датчики влажности и температуры.

Электронный барометр

Такие громоздкие барометры мы не сможем использовать в робототехнике. Нам нужен миниатюрный и энергоэффективный прибор, который легко подключается к той же Ардуино Уно. Большинство современных барометров делают по технологии МЭМС, так же как и гиротахометры с акселерометрами. МЭМС барометры основаны на пьезорезистивном, либо на тензометрическом методе, в которых используется эффект изменения сопротивления материала под действием деформирующих сил.

Если открыть корпус МЭМС барометра, можно увидеть чувствительный элемент (справа), который находится прямо под отверстием в защитном корпусе прибора, и плату управления (слева), которая осуществляет первичную фильтрацию и преобразование измерений.

К самым доступным датчикам давления, которые часто используются полетных контроллерах и в разного рода самодельных электронных устройствах, можно отнести датчики компании BOSH: BMP085 и BMP180. Второй барометр более новый, но полностью совместимый со старой версией.

Немного важных характеристик BMP180:

  • диапазон измеряемых значений: от 300 гПа до 1100 гПа  (от -500м от +9000м над уровнем моря);
  • напряжение питания: от 3.3 до 5 Вольт;
    сила тока: 5 мкА при скорости опроса — 1 Герц;
  • уровень шума: 0.06 гПа (0.5м) в грубом режиме (ultra low power mode) и 0.02 гПа (0.17м) а режиме максимального разрешения (advanced resolution mode).

Теперь подключим этот датчик к контроллеру, и попробуем оценить атмосферное давление.

Подключение BMP180

Оба датчика имеют I2C интерфейс, так что их без проблем можно подключить к любой платформе из семейства Ардуино. Вот как выглядит таблица подключения к Ардуино Уно.

Внешний вид макета

Программа

Для работы с датчиком нам понадобится библиотека: BMP180_Breakout_Arduino_Library

Скачиваем её из репозитория, и устанавливаем в Arduino IDE. Теперь все готово для написания первой программы. Попробуем получить сырые данные из датчика, и вывести их в монитор COM порта.

Процедура получения заветного давления из датчика не такая тривиальная, и состоит из нескольких этапов. В упрощенном виде алгоритм выглядит так:

  • запрашиваем у барометра показания встроенного датчика температуры;
  • ждем время A, пока датчик оценивает температуру;
  • получаем температуру;
  • запрашиваем у барометра давление;
  • ждем время B, пока датчик оценивает давление;
  • получаем значение давления;
  • возвращаем значение давления из функции.

Время B зависит от точности измерений, которая задается в функции startPressure. Единственный аргумент этой функции может принимать значения от 0 до 3, где 0 — самая грубая и самая быстрая оценка, 3 — самая точная оценка давления.

Загружаем программу на Ардуино Уно, и наблюдаем поток измерений атмосферного давления. Попробуем поднять датчик над головой, и опустить до уровня пола. Показания будут немного меняться. Осталось только разобраться, как нам преобразовать эти непонятные числа в высоту над уровнем моря.

Преобразование давления в высоту над уровнем моря

Датчик BMP180 возвращает величину давления в гектопаскалях (гПа). Именно в этих единицах принято измерять атмосферное давление. 1 гПа = 100 Паскалей. Известно, что на уровне моря давление в среднем составляет 1013 гПа, и каждый дополнительный метр над уровнем моря будет уменьшать это давление всего на 0.11 гПа (примерно).

Таким образом, если мы вычтем из результата функции getPressure число 1013, и разделим оставшуюся разность на 0.11, то мы получим значение высоты над уровнем моря в метрах. Вот так изменится наша программа:

В действительности, давление зависит от высоты над уровнем моря нелинейно, и наша формула годится лишь для высот на которых мы с вами обычно живем. Благо, человечеству известная более точная зависимость давления от высоты, которую мы можем применить для получения более точных результатов.

Здесь p — измеренное в данной точке давление, p0 — давление относительно которого идет отсчет высоты.

В библиотеке SFE_BMP180 уже есть функция, которая использует указанную. формулу для получения точной высоты. Используем её в нашей программе.

Я не стал полностью копировать функцию getPressure, чтобы сохранить читабельность текста.

В программе появилась еще одна переменная P0 — это давление, которое мы измерим на старте программы. В случае летательного аппарата, P0 будет давлением на взлетной площадке, относительно которой мы начнем набор высоты.

Визуализация

Теперь попробуем отобразить показания давления в программе SFMonitor, и посмотрим как меняется давление при движении датчика на высоту 2 метра.

В результате работы программы получим график давления в Паскалях:

Заключение

Как мы уяснили из урока, определение высоты над уровнем моря не такая тривиальная задача. Мало того, что давление зависит от высоты нелинейно, так еще картину портят различные внешние факторы. Например, давление  у нас дома постоянно меняется с течением времени. Даже за несколько минут, высота измеренная нашим прибором может варьироваться в диапазоне 0.5 — 1 метра. Температура так же сильно влияет на качество измерений, поэтому нам приходится учитывать её при расчете давления.

Для летательных аппаратов рекомендуется использовать датчики повышенной точности, такие как MS5611. У этого барометра точность измерений может достигать 0,012 гПа, что в 5 раз лучше, чем у BMP180. Также, для уточнения барометрической высоты полета применяют координаты GPS.

Успехов в наблюдении за атмосферой! 🙂

Датчик давления для различных сред PSE560

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Четыре диапазона рабочих давлений. Выходной сигнал – 1-5 В пост. тока или 4-20мА. Контактирующий материал – нерж.сталь. Степень защиты IP65

Датчик перепада давления PSE550

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

0 ~ 2,0 МПа
Встроенный индикатор

Выносной датчик давления для сжатого воздуха PSE510

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Контроль давления в удаленных и труднодоступных точках
Компактная конструкция
Высокое быстродействие

Датчик давления PSE540

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Датчик давления для сжатого воздуха PSE530

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Четыре диапазона рабочих давлений. Выходной сигнал – 1-5 В пост. тока. Степень защиты IP40

Датчик давления/вакуума с двухцветной цифровой индикацией ZSE80/ISE80

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Применим с широкой номенклатурой сред, неагрессивных к нержавеющей стали

Дисплей может изменять цвет индикации при срабатывании дискретного выхода

Датчик противодавления бесконтактного типа ISA2

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Для проверки наличия и положения объекта, правильности зазоров, наличия отверстий и т.д.

Компактные датчики вакуума / давления с цифровой индикацией ZSE10(F) ISE10

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Высота 9.8 мм.
Подводы сбоку или снизу.

Различные варианты крепления.

Контроллер для датчиков давления PSE300

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

5 режимов измерения давления. Аналоговый и дискретный выходной сигнал
Совместим с датчиками серии PSE5..(вых. 1-5 пост. тока). Степень защиты IP40

Манометр со встроенным реле давления GP46

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Манометр с ограничителем диапазона
Реле давления с индикатором срабатывания

Миниатюрный датчик давления GS40

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Компактная конструкция
Жидкокристаллический индикатор

Многоканальный контроллер для датчиков давления PSE200

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Контроль до 4-х датчиков одновременно
Возможно измерение перепадов давления

Датчик давления воздуха МАЗ, ЗИЛ, КАМАЗ ЭМИ

Данные обновлены: 20.03.2023 в 22:02

Аналоги

Код для заказа:

Код для заказа:
,

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Характеристики

г. Люберцы, ул. Мира, д. 8-Б

г. Люберцы, д. Машково, Машковский пр-д, д.11 стр.2

г. Москва, ул. Кетчерская, д. 2а

г. Москва, 33 км. МКАД, Варшавское шоссе, д. 170 ‘Г’

г. Москва, 82 км. МКАД, Дмитровское шоссе, д. 163, стр. 6

г. Москва, ул. Рябиновая, владение 63Г

г. Королев, Ярославский проезд, д. 19

МО, Красногорский район, д. Гольево, ул Центральная С44, «Территория бетонного завода МОИС 1»

г. Екатеринбург, ул. Монтажников, д. 24/1

г. Нижний Новгород, Московское шоссе, д. 137Б

г. Новосибирск, Кировский район, ул. Петухова, дом 69В

452680, Республика Башкортостан, г. Нефтекамск, ул. Высоковольтная, д. 2″Е”

г. Пермь, ул. 2-я Красавинская, д. 70

Республика Башкортостан, г. Уфа, ул. ул.Майкопская, д.18

г. Москва, Каширское шоссе, д. 53, к. 1

Датчик аварийного давления воздуха 6032.3829

  • Аналоги: ММ124Д, 2702.3829
  • Код ОКП: 45 7382 6594
  • Применяемость: КамАЗ, УРАЛ, МАЗ, ЗИЛ
  • Давление замыкания/размыкания, кгс/см2: 5±0,5

Использована информация: ООО ПЗ «ЭМИ»

Техническая информация

Урал 63685 – самосвал 6×4

Автомобильный завод «УралАЗ» в ноябре 2005 года представил вниманию публики первый дорожный самосвал, который получил название Урал-63685. Новый автомобиль, предназначенный для эксплуатации в различных отраслях производства, имеет колесную формулу 6×4.

В настройках личного кабинета Вы можете указать территорию отгрузки по умолчанию, чтобы
быстро получать список актуальных остатков.

Наличие товара на складах и в магазинах, а также цена товара указана
на 20.03.2023 21:00.
Представленные данные о запчастях и товарах на этой странице несут исключительно информационный характер.

Некоторые автолюбители не совсем до конца понимают, что такое датчик абсолютного давления в системе управления двигателем. Поэтому решил изложить сей пост, дабы высказать своё мнение по данной теме и развенчать некоторые мифы и заблуждения, с которыми постоянно приходится сталкиваться в той или иной степени.

Я уже писал пост и снимал видео про проверку датчика абсолютного давления в коллекторе при помощи обычного мультиметра. Но не все до конца поняли суть работы этого датчика. Поэтому в комментариях постоянно приходится отвечать на одни и те же вопросы, что отнимает очень много времени.

К тому же в выдаче поисковых систем про датчик абсолютного давления выдается одна «вода», которую все копипастят друг у друга, что ещё больше вводит в заблуждение начинающих водителей автомобилей с системой управления двигателем, построенной на МАР сенсоре.

Датчик абсолютного давления во впускном коллекторе

Для начала стоит отметить, что в большинстве случаев, обзывать этот датчик датчиком абсолютного давления не совсем корректно, так как его задача не только измерить абсолютное давление в коллекторе, но а также и атмосферное (барометрическое) давление вне коллектора. Поэтому его с таким же успехом можно назвать и датчиком барометрического давления.

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Для чего это необходимо?

Дело в том, что в разных местах нашей планеты атмосферное давление не одинаково. Да и в одном и том же месте давление с течением времени изменяется.

А при разном давлении изменяется и плотность воздуха, что приводит и к изменению массы воздуха на один и тот же объем. А это уже совершенно различные условия работы двигателя, и эту ситуацию блок управления двигателем должен учитывать, чтобы корректно управлять всё тем же двигателем.

При включении зажигания ЭБУ первым делом оценивает барометрическое давление. Так как пока двигатель не запущен, то давление в коллекторе равняется атмосферному. Именно этот момент позволяет избежать установки дополнительного датчика давления, который бы измерял барометрическое давление.

Ещё раз повторюсь — величина барометрического давления является очень важным измерением для нормальной работы системы управления двигателем!

Именно поэтому в мануалах по эксплуатации автомобиля указывается требование — при движении в горной местности или, наоборот, когда Вы едите с возвышенности, допустим, к морю, то необходимо периодически останавливать двигатель, чтобы ЭБУ определил новые значения барометрического давления.

Но кто из водителей будет останавливать двигатель, только из-за того, что так написано в книжке по эксплуатации? Да и кто, вообще, их читает?

Поэтому в ЭБУ закладывают алгоритмы перепроверки барометрического давления, которые работают и без остановки двигателя. Обычно это происходит при большой нагрузке на двигатель и при почти максимально открытой дроссельной заслонке.

Вот давайте посмотрим на приведенные графики. До резкого и полного нажатия педали газа, барометрическое давление составляет 98 кПа

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Далее мы резко нажимаем педаль газа до упора и блок управления делает перезамеры барометрического давления. Оно теперь составляет 97 кПа

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

К чему это всё я описывал?

А чтобы подвести к первому заблуждению об этом датчике.

Большинство при проверке датчика абсолютного давления обращает внимание только на давление в коллекторе! Оно и понятно — датчик же абсолютного давления, значит и проверять необходимо абсолютное давление. Логика, в принципе, понятна, но имея уже какой-никакой опыт, я могу утверждать на основании своей личной статистики, что в подавляющем числе случаев неисправностей датчика абсолютного давления, проблемы вылезают как раз в некорректном измерении барометрического давления. Хотя абсолютное давление в этот момент не вызывает вопросов.

У меня таких проблемных графиков много и все я их выкладывать не буду, конечно. Но для примера парочку покажу. Вот барометрическое давление 112 кПа. Встречал показания и 115 кПа. Хотя максимальное давление на планете было официально зарегистрировано, по-моему, 108 кПа.

Поэтому датчик явно и нагло врет

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Вот другой пример. Автомобиль едет по обычной дороге и показания барометрического давления составляют 98 кПа.

Но спустя пару секунд, давление падает до 84 кПа

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Давление упало на 14 кПа! Такое может быть в реальности?

Конечно же нет. Датчик явно дает неверные показания. Хотя к абсолютному давлению в коллекторе претензий нет.

В общем, вывод первый — датчик абсолютного давления служит не только для измерения абсолютного давления, но и для измерения барометрического давления. Причём довольно часто проблемы проявляются именно в замерах барометрического давления, что приводит к проблемам в работе и пуске двигателя.

Второй вывод — датчик абсолютного давления измеряет давление в коллекторе! Если на последнем графике абсолютное давление составляет 28 кПа, то это и есть давление 28 кПа, но никак ни разрежение и, уж тем более, не вакуум, как часто можно встретить это описание в интернете. Это давление!

Ну теперь плавно перейдём к третьему и самому главному выводу. Для чего нужен датчик абсолютного давления и от чего зависят его показания.

Показания датчика абсолютного давления

Показания датчика абсолютного давления применяются для расчета расхода воздуха и для определения нагрузки на двигатель.

Но если расчет расхода воздуха осуществляется косвенно по данным датчика абсолютного давления, то нагрузка на двигатель является прямой зависимостью давления в коллекторе.

Чем ниже давление в коллекторе, тем меньше нагрузка на двигатель. И наоборот — чем выше давление в коллекторе, тем больше нагрузка на двигатель. Именно так это понимает блок управления двигателем.

Поэтому давление в коллекторе является наиважнейшим сигналом для ЭБУ. Даже положение ДЗ не такой важный сигнал для ЭБУ, как давление в коллекторе.

И вот тут начинаются заблуждения и непонятки для многих.

От чего зависит давление во впускном коллекторе

Большинство убеждены, что давление в коллекторе зависит от открытия дроссельной заслонки. Пока заслонка прикрыта — давление маленькое, а когда заслонку открыли — то давление выросло. Как писали мне на Ютуб канале — это простая физика и никак иначе.

Я согласен, что с физикой не поспоришь, поэтому сама физика и поможет нам разобраться в этом вопросе.

Начнем с того, что посмотреть показания датчика абсолютного давления можно при помощи диагностического сканера или при помощи вольтметра.

Мы знаем, что атмосферное давление обычно составляет 101 кПа. А на холостом ходу прогретого двигателя значения во впускном коллекторе составляют 30-33 кПа или, примерно, 0.9 -1 В.

Это получается из-за того, что двигатель внутреннего сгорания работает на воздухе с небольшим добавлением массы топлива. И этот воздух он сам в себя всасывает. Как пылесос.

Потребность в воздухе у него большая, но так как дроссельная заслонка практически прикрыта и воздуха поступает очень мало, то двигатель высасывает всё что можно из впускного коллектора. Естественно, давление там падает из-за недостатка молекул воздуха.

И тут многие убеждены, что если приоткрыть дроссельную заслонку, то давление поднимется.

Но на самом деле всё будет совсем не так. Поэтому приходится постоянно отвечать на один и тот же вопрос — «Почему я открыл заслонку, а давление не поднялось, а упало ещё больше? Менять датчик абсолютного давления?»

Именно этот постоянный вопрос и побудил меня написать этот пост и ответить раз и навсегда — давление во впускном коллекторе зависит не от дроссельной заслонки, а от нагрузки на двигатель!

Автомобиль стоит на месте и двигатель работает в режиме холостого хода. Если мы приоткроем дроссельную заслонку, то давление действительно сделает скачок до 50-100 кПа (в зависимости как её открыть).

Но скачок этот будет кратковременным. Так как двигатель сам по себе довольно медленный и ему необходимо некоторое время, чтобы начать наращивать обороты, то он просто не успевает сразу всосать в себя резкий приток воздуха через открытую ДЗ. Но так как его ничто не держит (автомобиль стоит на месте на нейтральной передаче), то спустя секунду он с легкостью развивает обороты.

Но так как через приоткрытую ДЗ прохождение воздуха всё равно ограничено, то двигатель быстро всасывает в себя всё, что можно. Но так как он уже поднял обороты, то и его «всасывающая» способность увеличилась. Он стал мощнее и с большей силой всасывает в себя воздух. Естественно, давление во впуском коллекторе падает даже ниже того, которое было на холостом ходу.

Вот примеры графиков. Обороты больше 2000, а давление в коллекторе упало с 33 до 23 кПа!

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Так и должно быть! Датчик абсолютного давления работает исправно.

Ещё раз повторю — открытие дроссельной заслонки не обязательно должно приводить к повышению давления в коллекторе. Потому что не заслонка влияет на повышение давления, а нагрузка на двигатель!

Вот как это выглядит. Допустим мы едем по дороге на 5-й передаче. Затем резко открываем дроссельную заслонку. В коллектор устремляется воздух без каких-либо препятствий, но двигатель уже не в состоянии быстро развить обороты и всосать в себя весь воздух, так как ему кроме самого себя необходимо крутить ещё и колеса! Поэтому ему тяжело и обороты он развивает очень медленно (а может и, вообще, не развивать, если ехать ещё и в гору). Естественно,  воздуха в коллекторе много и давление поднимается практически до атмосферного

Подогреватель воздуха для компрессорной разработки и ГК "Теплоприбор", производства КИПиА

Вот в этот момент ЭБУ видит, по большому давлению в коллекторе, что двигатель не в состоянии «переработать» весь воздух, который ему дали и понимает это, как большую нагрузку на двигатель.

Надеюсь, что теперь понятно, тем, кто этого не понимал и переживал за работоспособность своего датчика абсолютного давления.

Всем Мира и ровных дорог

Преобразователи давления

Показано с 1 по 25 из 35 (всего 2 страниц)

Преобразователи давления — это измерительные приборы, которые применяются для получения параметров давления в различных средах. Процесс измерения идет непрерывно, после чего значения преобразовываются в универсальный сигнал выхода току или напряжению. Другое название устройств – датчики давления.

По типу замеряемого давления можно купить преобразователи давления ОВЕН разных видов:

  • Избыточного  – замеряют параметр, который создается средой относительно атмосферы (воды, газа). Это самый распространенный тип, применяемый в промышленности.
  • Абсолютного – замеряют параметр, который создается средой по сравнению с вакуумом. Вид не самый популярный, применяется в химических отраслях. Обычно они делаются из нержавейки.
  • Вакууметрического разряжения – замеряют параметры вакуума по сравнению с атмосферным давлением.  Они популярны на пищевой, металлургической промышленности и при литье для строения машин.
  • Гидростатические уровнемеры – подвид сенсоров избыточного давления, но используются для замерения уровня жидкостей – как давит столб. Применяются в водоканалах, на системах очистки.

Приобрести устройства можно в Санкт-Петербурге можно в компании Овен. Мы предлагаем привлекательные цены и быструю доставку после оформления заявки. На все вопросы отвечают грамотные консультанты.

Давление, эта важнейшая после температуры физическая величина, является определяющей во многих технологических процессах.

Преобразователи давления предназначены для измерений и непрерывного преобразования давления в унифицированный выходной сигнал постоянного тока, напряжения или в цифровой сигнал.

Используются датчики в регуляторах и других устройствах автоматики в системах автоматического контроля, регулирования и управления технологическими процессами в системах водообработки, отопления, вентиляции и кондиционирования; гидравлических системах, холодильной технике, расходомерах и счетчиках; дизельных двигателях; тормозных системах; уровнемерах, в испытательных стендах и т.д.

Индустриальные измерения и контрольно-измерительная аппаратура применяются во всех областях промышленности — от атомной до пищевой и фармакологической; соответственно, везде нужны и преобразователи давления и преобразователи уровня.

Принцип действия датчиков основан на упругой деформации чувствительного элемента (сенсора), на который нанесены полупроводниковые тензорезисторы, включенные по схеме моста Уинстона. Измеряемое давление подводится через штуцер в рабочую полость датчика и вызывает деформацию диафрагмы. Это приводит к изменению геометрии резисторов, находящихся с ней в тесной механической связи и изменению их сопротивления. Происходит преобразование приложенного давления (механический вход) в изменение сопротивления (электрический выход).

Мы предлагаем следующий алгоритм, чтобы правильно подобрать датчик для Вашего применения:

1. Тип измеряемого давления

Преобразователи давления измеряют разность двух давлений, воздействующих на измерительную мембрану (чувствительный элемент) датчика. Одно из этих давлений — измеряемое, второе — опорное, то есть то давление, относительно которого происходит отсчет измеряемого. В зависимости от вида опорного давления все датчики разделяются на следующие виды:

Практически все наши преобразователи давления имеют модификации для измерения как абсолютного так и избыточного (в том числе разряжения) давлений. Подробнее Вы можете ознакомиться в разделе продукция/преобразователи давления.

Преобразователи абсолютного давленияПредназначены для измерения величины абсолютного давления жидких и газообразных сред. Опорное давление — вакуум. Воздух из внутренней полости чувствительного элемента датчика откачан. Например, барометр –частный случай датчика абсолютного давления.

Преобразователи избыточного (относительного) давленияПредназначены для измерения величины избыточного давления жидких и газообразных сред. Опорное давление — атмосферное; таким образом, одна сторона мембраны соединена с атмосферой.

Преобразователи дифференциального (разности, перепада) давленияПредназначены для измерения разности давления среды и используются для измерения расхода жидкостей, газа, пара, уровня жидкости. Давление подается на обе стороны мембраны, а выходной сигнал зависит от разности давлений.

В нашей линейке предствалены датчики

Преобразователи гидростатического давления (преобразователи уровня)Предназначены для преобразования гидростатического давления контролируемой среды в сигнал постоянного тока. Измеряют давление столба жидкости, зависящее только от его высоты и от плотности самой жидкости. Изменение атмосферного давления компенсируется при помощи капиллярной (дыхательной трубки)

Преобразователи вакууметрического давления (разряжения)Предназначены для измерения величины вакуумметрического давления жидких и газообразных сред. Опорное давление в этих датчиках также атмосферное. Однако, в отличие от датчиков избыточного давления, измеряемое давление меньше атмосферного, т.е. существует разрежение относительно атмосферы.

2. Среда использования датчика

Для надежной работы датчиков необходимо выбирать материалы элементов, контактирующих с измеряемой средой (мембран, фланцев, кабеля и уплотнительных колец) химически стойкими к этим средам. Например, для различных сред эксплуатации материалом мембран сенсоров может быть нержавеющая сталь, титан, титановый сплав, хастеллой, керамика, Kynar и др. Материал кабеля особенно актуален для погружных гидростатических датчиков давления. Для питьевой воды идеально подойдет полиэтиленовый PE кабель, для не агрессивных промышленных сред полиуретановый PUR. Если же Вы собираетесь использовать датчик в топливе или агрессивной жидкости, то оптимальным решением будет термопластичный эластомер (Hytrel) или тефлон (PTFE). Все эти материалы мы используем и предлагаем в своих модификациях датчиков Келлер.

3. Климатическое исполнение

Преобразователи давления также отличаются по климатическому исполнению. Следует обращать внимание на климатические условия (температура окружающей среды, влажность, прямое попадание воды и солнечных лучей) в месте установки датчика. Они должны соответствовать тем, на которые он рассчитан. Причем очень важно различать две температуры, которые могут оказывать влияние на наш датчик: температура окружающей среды и температура измеряемой среды. Наши преобразователи давления могут работать в условиях окружающей и измеряемой среды от -55 до 150С. Специальные исполнения преобразователей давления способны работать при температурах среды до +300С.

4. Выходной сигнал

Рассмотрим основные типы:

Тип выходного сигнала прежде всего зависит от уже имеющегося оборудования и стоящей перед Вами задачи. Для этого необходимо изучить входы, которые имеют используемые контроллеры, приборы, машины или регуляторы. Все перечисленные сигналы мы используем в наших датчиках давления, а также и многие другие.

Для автономных приборов мы бы посоветовали использовать датчики с цифровым интерфейсом I2C с данными датчиками Вы можете ознакомиться здесь. Если же Вам не удобно работать с цифровым выходом, то лучше использовать датчики с минимальным напряжением питания например 3,5V — это датчики 33X или 5V — это датчики 21Y.

5. Точность измерений

На рисунке представлен датчик без температурной компенсации и с температурной компенсацией осуществляемой по специальным алгоритмам микропроцессором в преобразователях давления Келлер.

Особое внимание следует уделять стабильности датчиков давления. Ведь даже очень точный датчик спустя нескольких часов работы при температурных циклах в широком диапазоне начинает давать дополнительную погрешность более 0,5%ВПИ. Что говорить, если эти циклы будут продолжаться месяцами и даже годами!

Некоторые виды датчиков давления имеют взрывозащищенное исполнение. Эти модели могут успешно использоваться для определения давления на взрывоопасных объектах с присутствием взрывчатых и легко воспламеняющихся газов и жидкостей. В линейке Келлер представлены как преобразователи с искробезопасной цепью, так и преобразователи со взрывонепроницаемой оболочкой.

Преобразователи давления относятся к измерительной технике и должны проходить обязательные сертификационные испытания. После этого они утверждаются и вносятся в Госреестр средств измерений.

Надеемся, что данный материал поможет Вам лучше ориентироваться при выборе преобразователей давления.

Пневматические преобразователи (датчики) избыточного, дифференциального (разности) давления и разряжения предназначены для выдачи информации о величине измеряемого давления в виде стандартного пневматического выходного сигнала 20-100 кПа (0,2-1кгс/см2), используемого для контроля, управления и регулирования технологическими процессами в системах со сложными, в том числе взрывоопасными условиями или в тех случаях, где применение электрических преобразователей (датчики с выходом 0-5/4-20мА или 0-5/10В) ограничено спецификой условий эксплуатации.

У пневматических преобразователей давление и разности Д.(дифманометров) на выходе 20кПа соответствует нулю измеряемого диапазона, а 100кПа — максимуму измеряемого диапазона, пневматический сигнал может передаватся по линиям связи (импульсные трубки) на расстояние до 300 метров.
Причем в линии питания пневматических датчиков сухим очищенным сжатым воздухом должне поддерживаться напор не менее 140кПа±10% с расход воздуха — до 5 литров в минуту, для этого применяются специальные редуктора давления с фильтром — РДФ (например, см. редуктор РДФ-3.1(с манометром) и РДФ-3-2(без манометра)).

Подробнее о датчиках/преобразователях давления пневматических (далее ДПП), их видах, принципах действия, конструктивных исполнениях, а также о технических характеристиках, особенностях выбора (как правильно выбрать, заказать, купить ДПП), комплектации, областях применения, о ценах (см. прайс-лист на датчики давления), наличию на складе или сроках изготовления см. ниже.

Общие понятия о пневматических преобразователях (датчиках)

Назначение пневматических преобразователей давления — приборы предназначены для измерения давления (а дифманометры-перепадомеры, также могут измерять расход и уровень) неагрессивных и умеренно агрессивных жидкостей и газов с выдачей информации в виде стандартного пневматического выходного сигнала 20-100 кПа.
Пневматический сигнал 20-100кПа, в основном, используется в системах контроля и управления технологическим процессами во взрывоопасных условиях (в химической, нефтеперерабатывающей, нефтехимической, угольной промышленности, в энергетики, судостроении и ряде других отраслей, где применение электрических сигналов ограничено спецификой условий эксплуатации.

Принцип действия большинства пневмопреобразователей основан на пневматической силовой компенсации: под воздействием давления (далее Д.) чувствительный элемент передает усилие на рычаг, поворачивающий заслонку относительно сопла, в результате чего меняется Д. в камере пневмореле и в связанной с ней системе обратной связи. Это Д. и является пневматическим выходным сигналом прибора.

Питание пневматических преобразователей  — стабилизированное редуктором давление сжатого сухого очищенного воздуха 140кПа±10%, расходом до 5 литров в минуту.

По виду измеряемого давления различают преобразователи давления (кПа, МПа, кгс/см2) в унифицированный выходной пневматический сигнал 20-100 кПа (0,2-1 кгс/см2):
ДА – абсолютного, ДИ – избыточного, ДВ — вакуумметрического (разряжения), ДИВ -избыточного и вакуумметрического («плюс-минус»), ДД — разности давлений (перепада);

Пределы допускаемой основной погрешности пневматических преобразователей (датчиков) обычно плюс-минус 0,5; 1,0; 1,5% от диапазона измерений (также приборы могут иметь дополнительную погрешность от влияния внешних факторов: температуры окружающей среды (Тос), нестабильности питания, вибрации прочих факторов).

Дополнительная информация о пневматических преобразователях (датчиках) давления

Пневматические преобразователи давления, разряжения и разности/перепада давления (дифманометры-перепадомеры) применяются, как первичные приборы (датчики) в системах контроля, автоматизированного регулирования и управления технологическими процессами (АСУТП), обычно во взрывоопасных условиях или иных случаях, когда применение электрических приборов не желательно, при измерении:
— избыточного (напора), вакуумметрического (разряжения) или разности (перепада) давлений (как дифференциальный манометр — перепадомер),
— расхода жидкости, газа или пара по разности давления в стандартных сужающих устройствах — диафрагмах/соплах (как расходомер),
— уровня жидкости по давлению гидростатического столба, находящегося под атмосферным, избыточным или вакуумметрическим Д. (как гидростатический уровнемер).

Пневматические преобразователи применяются совместно с вторичными пневматическими приборами: регуляторами, сигнализаторами, самопишущими бумажными регистраторами и другими устройствами автоматики, способными обрабатывать пневматический сигнал 20-100кПа.

Также при приобретении и эксплуатации пневматических датчиков давления необходимо иметь следующее дополнительное оборудование:
Редукторы-стабилизаторы давления с фильтром типа РДФ-3, РДФ-4 и др. или отдельно редуктора и фильтры воздуха.
Монтажно-запорную арматуру (отводы, краны(клапаны), мембранные разделители, соединительные рукава, импульсные трубки, подробнее см. ниже, учитывая, что на дифманометр, имеющий два присоединительных штуцера, требуется двойной комплект присоединительных частей (КПЧ) для «плюсовой» и «минусовой» камеры соответственно):
1. Монтажная арматура: отборные устройства(ОУ): бобышки (адаптеры приварные), отводы прямые и угловые (в т.ч. петлевые трубки Перкинса) или импульсные трубки (линии).
2. Краны манометровые (до 16/25бар) или клапаны/клапанные блоки (свыше 2,5МПа), клапаны нажимные и предохранительные.
3. Прокладки/уплотнения медные, фторопластовые, паранитовые и др.
4. Переходники М/G/K нар/вну, муфты, бочонки (материал сталь, латунь, нержавейка).
5. Защитные устройства: Демпферы (гасители пульсаций гидроударов), охладители (отводы-радиаторы), разделители мембранные РМ-5319,-5320,-5321 и др., капиллярные линии и соединительные рукава мод-55004.
6. КМЧ – комплект монтажных частей (обычно: скоба, кронштейн, крепеж).
7. КПЧ – комплект присоединительных частей (обычно: фланцы, штуцера, гайки, ниппели (сталь, нерж.), крепеж, уплотнения).
8. Защитные кожухи. Монтаж в специальные утепляющие пожаробезопасные влагозащитные шкафы и чехлы, применение спец. обогревателей.

* — ГСП — Государственная система промышленных приборов и средств автоматизации (сокр. ГСП) — это совокупность унифицированных блоков, приборов и устройств для получения, обработки и ис­пользования информации. ГСП имеет единые параметры вход­ных и выходных сигналов, а также унифицированные габарит­ные присоединительные размеры. Она построена по блочно-модульному принципу, что позволяет совершенствовать системы автоматического управления путем замены отдельных блоков и элементов.

вернуться в начало страницы

Заранее благодарим Вас за обращение в любое из предприятий группы компаний — ГК «Теплоприбор» (Теплоприборы, Промприбор, Теплоконтроль и другие) и обещаем приложить все усилия для оправдания Вашего доверия.

Вернуться в начало страницы.

Точные измерительные приборы – важная составляющая деятельности всех современных отраслей хозяйства. Они служат для своевременного учета расхода разных жидкостей, нужны в работе с газовыми смесями и паром.

Кроме классических расходомеров, обладающих различными принципами действия, часто применяются еще и электронные приборы, измеряющие давление. Подобные устройства – обязательный элемент большей части измерительных комплексов и теплосчетчиков. Они часто входят в состав систем, служащих для осуществления автоматического контроля.

Так называемые датчики давления востребованы на предприятиях энергетического комплекса, в производстве продуктов питания, нефтеперерабатывающей сфере и других отраслях, где требуется знать цифровое значение давления для обеспечения бесперебойной и безопасной работы оборудования.

Что такое датчик давления

Датчик давления – это прибор, предназначенный для мониторинга давления в жидкостной либо газообразной среде с передачей сигнала о полученных измерениях на соответствующее оборудование. Это необходимо для своевременной корректировки параметров различных технологических процессов.

Датчик для измерения давления является компактным устройством, представляющим собой жидкокристаллический дисплей в алюминиевом корпусе. В него входят специальные трубки, которые оценивают давление конкретной среды – жидкости, газа или пара, а затем преобразовывают его либо выводят на экран его числовое значение при помощи аналогового или цифрового сигнала.

Принцип осуществления деятельности данного прибора напрямую зависит от типа измеряемого давления:

  • – полное значение по отношению к принятому нулю (точке перехода вакуума в давление),
  • – диапазон давления между двумя заданными точками,
  • – значение по отношению к атмосферному давлению.

Типы датчиков

Датчики давления используются преимущественно в пищевом или же химическом производстве. Особенно интересным вариантом можно назвать практичный и современный интеллектуальный датчик, служащий для измерения абсолютного давления, а также реализующий измерение относительно величины абсолютного вакуума. Данное измерение наиболее часто применяется там, где необходимо произвести быстрый учет давления газа, пара или же тепловой энергии.

По конструкции элементов чувствительности датчики делятся на волоконно-оптические и оптоэлектронные. Первые включают оптический волновод и определяют давление в результате поляризации света. Вторые проводят свет через многослойную конструкцию, каждый слой которой меняет его свойства в зависимости от давления среды.

По виду измерений для датчиков давления принята следующая классификация:

1. Датчик дифференциального давления помогает удачно решать задачи по учету расходования замеряемой среды. Принцип его действия заключается в замере разностей давления между двумя находящимися рядом полостями – плюсовой и минусовой. Он применяется для успешного учета расходов. Узкое устройство в коммуникациях является местным сопротивлением. В процессе прохождения через него происходит изменение характера скорости потока. Перед данным сужающим устройством давление в атмосферах значительно возрастет, а после него – снижается. Чем более высокого коэффициента достигает разница, имеющаяся на входе, а далее и на выходе сужающего устройства, тем выше будет расход той среды, которая протекает по данной трубе. Подобный датчик без особых проблем позволит произвести учет объема данной жидкости не только в самой трубе, но и в данной емкости. Это можно осуществить при помощи измерения давления в столбе жидкости, которая воздействует на плюсовую мембрану. Кроме того, в некоторых случаях производится измерение результатов в минусовой полости давления, которая находится непосредственно под куполом данной емкости. Это необходимо для того, чтобы надежно произвести исключение чрезмерного влияния большинства насыщенных паров. Этот способ называется гидростатическим.

2. Датчик избыточного давления нужен для успешной регулировки и дальнейшего управления всеми техническими процессами. Он может применяться в составе большинства водяных систем, используемых для дальнейшего теплоснабжения; входит в необходимую комплектацию узлов, служащих для коммерческого и полноценного технологического учета всех требуемых жидкостей, газов и пара.

3. Датчики абсолютного давления. Сюда относятся интеллектуальные преобразователи, способные справиться с непрерывным измерением величин абсолютного и избыточного давления. Такие приборы также являются незаменимыми помощниками в случаях, когда нужно одновременно узнать точное значение дифференциального или же гидростатического давления, определиться с величиной давления в разреженных, жидких или же газообразных средах, в которых находится насыщенный или перегретый пар.

Комплексное исполнение датчика давления позволяет использовать его по назначению. Такое устройство применяется в условиях низких и высоких температур, а также в наиболее агрессивных средах.

В каждой из отраслей хозяйства необходимость того или иного датчика определяется сугубо индивидуальным способом, а также реальной надобностью. Выбор прибора зависит от того, какие перед ним поставлены задачи, а также от текущих условий эксплуатации. Заказчик самостоятельно выбирает материал, требующийся для изготовления мембраны разделения, а также корпуса электронного блока.

Технические характеристики и преимущества

К ключевым техническим опциям интеллектуальных датчиков давления можно отнести следующие:

  • измерение абсолютного, избыточного, дифференциального, гидростатического давления;
  • универсальность использования – измеряемой средой может выступать морская вода, различные виды масел, дизельное топливо, керосин, газ, мазут;
  • максимальная температура измеряемой среды – 120 градусов;
  • диапазон температур окружающей среды – от -60 до +70;
  • абсолютное давление – от 2,5 КПа до 16 МПа;
  • избыточное давление – от 0,16 КПа до 100 МПа;
  • погрешность измерения – от 0,1 до 0,5%;
  • высокий уровень пыле- и влагозащищенности – IP54, IP67.
  • межповерочный интервал составляет 5 лет;
  • срок гарантии – 3 года.

Датчик давления имеет высокую точность измерений. Если осуществляется специальный заказ, погрешность не превышает 0,04%. Датчики хорошо показывают себя в широком диапазоне измерений, в процессе самодиагностики и перегрузки.

Интеллектуальный счётчик – это надежное средство измерения, которое отвечает заявленным метрологическим и технико-эксплуатационным параметрам, легко работает в агрессивной среде и при низких температурах. Дополнительные плюсы – высокий уровень визуализации, простота использования, комфортный вывод информации на дисплее. Своевременно узнав о превышении давления, можно спланировать действия для предотвращения серьезных проблем.

Устройство датчика давления

Датчик давления состоит из преобразующего элемента; элемента, воспринимающего давление; приемника давления; системы вторичной обработки цифрового сигнала и устройства вывода информации. Все это скрывается в общем корпусе, оснащенном цифровым дисплеем.

Методы измерения давления при помощи датчика:

  • тензометрический – чувствительные комплектующие измеряют давление за счет чуткости элементов, которые жестко припаиваются к мембране;
  • пьезорезистивный – основан на применении преобразователя давления (мембрана из монокристаллического кремния), находящегося в металло-стеклянном корпусе;
  • емкостные преобразователи применяют метод изменения емкости конденсатора;
  • резонансный – в основе лежат акустические или электромагнитные процессы;
  • индуктивный – основан на постоянных вихревых потоках.

Области применения

Датчики можно использовать в следующих областях:

  • медицинской сфере;
  • пищевой промышленности;
  • тепло- и водоснабжении;
  • машиностроительном производстве, а также автомобильной промышленности;
  • электронной промышленности, роботостроении.

Счетчики давления позволяют держать под контролем большинство производственных процессов, успешно применяются в важных социальных сферах. Без них невозможно представить нормальную жизнедеятельность.

Как выбрать

Для того чтобы избежать серьезных финансовых расходов и правильно подойти к выбору датчика давления, необходимо учесть несколько важных качественных характеристик:

  • диапазон давления – для разных целей использования диапазоны могут резко отличаться друг от друга;
  • точность осуществления измерений – в некоторых случаях требуется высочайший уровень точности, например, при разработке двигателей для гоночных автомобилей;
  • температура является крайне важным и серьезным показателем, ведь приборы широко востребованы для тех устройств, которые используются в различных температурных диапазонах;
  • качество выходного сигнала на данном приборе;
  • принцип передачи информации о текущем давлении;
  • удобство присоединения датчика давления к технологическому процессу;
  • материал изготовления датчика – это существенно, если планируется использовать его в условиях высоких нагрузок;
  • наличие сертификата качества, что делает применение датчика максимально безопасным;
  • сроки доставки.

Учитывая соответствующие факторы, можно найти подходящий датчик давления, который прослужит максимально долгое время без поломок и прочих проблем. Важно лишь подобрать достойного производителя, имеющего нужную документацию и положительные отзывы, а также правильно произвести установку и начальную настройку.

Оцените статью
Анемометры
Добавить комментарий