2 Расчетные методы определения несущей способности свай
Сваи-стойки
7.2.1 Расчетные методы следует использовать для оценки несущей способности свай-стоек при проектировании сооружений всех уровней ответственности.
Несущую способность Fd, кН, набивной и буровой свай, взаимодействующих со скальным грунтом, а также забивной сваи и сваи-оболочки, опирающейся на скальный или слабодеформируемый грунт, принимают равной несущей способности основания под нижним концом сваи Fdb
Несущую способность основания под нижним концом сваи Fdb следует определять, используя расчетное сопротивление грунта под нижним концом сваи, по формуле
где γc – коэффициент условий работы сваи в грунте, принимаемый равным 1;
R – расчетное сопротивление грунта под нижним концом сваи-стойки, кПа;
A – площадь опирания на грунт сваи, м2, принимаемая для свай сплошного сечения и полых свай с закрытым нижним концом равной площади поперечного сечения брутто, для полых свай круглого сечения с открытым нижним концом и свай-оболочек – равной площади поперечного сечения нетто при отсутствии заполнения их полости бетоном и равной площади поперечного сечения брутто при заполнении этой полости бетоном на высоту не менее трех ее диаметров.
Для набивных, буровых свай и свай-оболочек, заполняемых бетоном, опирающихся на невыветрелые скальные грунты (без слабых прослоек) при ld < 0,5 м, R следует определять по формуле
где Rm – расчетное сопротивление массива скального грунта под нижним концом сваи-стойки, определяемое по Rc,m,n – нормативному значению предела прочности на одноосное сжатие массива скального грунта в водонасыщенном состоянии, кПа, определяемому, как правило, в полевых условиях;
γg – коэффициент надежности по грунту, принимаемый равным 1,4.
Для предварительных расчетов оснований сооружений всех уровней ответственности значения характеристик Rm и Rc,m,n допускается принимать равным
где Rc и Rc,n – соответственно расчетное и нормативное значения предела прочности на одноосное сжатие скального грунта в водонасыщенном состоянии, кПа, определяются по результатам испытаний образцов отдельностей (монолитов) в лабораторных условиях;
Ks – коэффициент, учитывающий снижение прочности ввиду трещиноватости скальных грунтов, принимаемый по таблице 7.1.
Примечание.При опирании забивных свай на слабо деформируемые грунты, для которых не задано значение предела прочности на одноосное сжатие, допускается принимать величину R по таблице 7.2 как для гравелистых песков с повышающим коэффициентом Eгр/Ek0, где Eгр – модуль деформации слабодеформируемого грунта, а Ek0 – 50 МПа.
Таблица 7.1. СП 24.13330.2021
В любом случае значение R следует принимать не более 20000 кПа и не менее величины расчетного сопротивления под нижним концом сваи для крупнообломочных грунтов с песчаным заполнителем и с углом внутреннего трения φI = 32° согласно 7.2.7.
Расчетное сопротивление скального грунта R для набивных и буровых свай и свай-оболочек, заполняемых бетоном и заделанных в невыветрелый скальный грунт (без слабых прослоек) не менее чем на 0,5 м, определяется по формуле
где Rm – определяется по формуле (7.7);
ld – расчетная глубина заделки набивной и буровой сваи и сваи-оболочки в скальный грунт, м (рисунок 7.1);
df – наружный диаметр заделанной в скальный грунт части набивной и буровой свай и сваи-оболочки, м.
Значение фактора заглубления R определяется по формуле (7.8), принимая фактор заглубления
Примечание.При наличии в основании набивных, буровых свай и свай-оболочек выветрелых, а также размягчаемых скальных грунтов их предел прочности на одноосное сжатие следует принимать по результатам испытаний штампами или по результатам испытаний свай и свай-оболочек статической нагрузкой.
7.2.2 Для предварительной оценки несущей способности Fd сваи, прорезающей толщу скальных грунтов, ее величину допускается определять с учетом расчетного сопротивления грунтов основания на боковой поверхности сваи согласно приложению Д.
7.2.3 Для расчетов оснований сооружений классов КС-3 и КС-2, а также оснований, сложенных выветрелыми, размягчаемыми, со слабыми прослойками скальными грунтами, несущую способность сваи-стойки Fd следует принимать по результатам испытаний свай статической нагрузкой.
Висячие забивные, вдавливаемые всех видов и железобетонные сваи-оболочки, погружаемые без выемки грунта (забивные сваи трения)
7.2.4 Несущую способность Fd, кН, висячей забивной и вдавливаемой свай и железобетонной сваи-оболочки, погружаемой без выемки грунта, работающей на вдавливающую нагрузку, следует определять как сумму расчетных сопротивлений грунтов основания под нижним концом сваи и на ее боковой поверхности по формуле
где γc – коэффициент условий работы сваи в грунте, принимаемый равным 1.
Примечание.Коэффициент условий работы γc в формулах (7.9) и (7.12) следует принимать: для нормальных промежуточных опор линий электропередачи 1,2, а в остальных случаях 1,0;
R – расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое по таблице 7.2;
A – площадь опирания на грунт сваи, м2, принимаемая по площади поперечного сечения сваи брутто или по площади поперечного сечения камуфлетного уширения по его наибольшему диаметру, или по площади сваи-оболочки нетто;
u – наружный периметр поперечного сечения ствола сваи, м;
fi – расчетное сопротивление i-го слоя грунта основания на боковой поверхности сваи, кПа, принимаемое по таблице 7.3;
hi – толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;
γR,R, γR,f – коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта и принимаемые по таблице 7.4.
В формуле (7.9) следует суммировать сопротивления грунта по всем его слоям, пройденным сваей, за исключением случаев, когда проектом предусматривается планировка территории срезкой или возможен размыв грунта. В этих случаях следует суммировать сопротивления всех слоев грунта, расположенных соответственно ниже уровня планировки (срезки) и дна водоема после его местного размыва при расчетном паводке.
Примечания:
- Несущую способность забивных булавовидных свай следует определять по формуле (7.9), при этом за периметр u на участке ствола следует принимать периметр поперечного сечения ствола сваи, на участке уширения – периметр поперечного сечения уширения. Расчетное сопротивление fi грунта на боковой поверхности таких свай на участке уширения, а в песках и на участке ствола следует принимать таким же, как для свай без уширения; в глинистых грунтах сопротивление fi на участке ствола, расположенного выше уширения, следует принимать равным нулю.
- Расчетные сопротивления грунтов R и fi в формуле (7.9) для лессовых грунтов при глубине погружения свай более 5 м следует принимать по значениям, указанным в таблицах 7.2 и 7.3 для глубины 5 м. Кроме того, для этих грунтов в случае возможности их замачивания расчетные сопротивления R и fi, указанные в таблицах 7.2 и 7.3, следует принимать при показателе текучести, соответствующем полному их водонасыщению.
Таблица 7.2. СП 24.13330.2021
Глубина погружения нижнего конца сваи, м | Расчетные сопротивления R, кПа, под нижним концом забивных и вдавливаемых свай и свай-оболочек, погружаемых без выемки грунта | ||||||
песков средней плотности | |||||||
гравелистых | крупных | – | средней крупности | мелких | пылеватых | – | |
глинистых грунтов при показателе текучести IL, равном | |||||||
0 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | |
3 | 7500 | 6600 | 3000 | 3100 | 2000 | 1100 | 600 |
4 | 8300 | 6800 | 3800 | 3200 | 2100 | 1250 | 700 |
5 | 8800 | 7000 | 4000 | 3400 | 2200 | 1300 | 800 |
7 | 9700 | 7300 | 4300 | 3700 | 2400 | 1400 | 850 |
10 | 10500 | 7700 | 5000 | 4000 | 2600 | 1500 | 900 |
15 | 11700 | 8200 | 5600 | 4400 | 2900 | 1650 | 1000 |
20 | 12600 | 8500 | 6200 | 4800 | 3200 | 1800 | 1100 |
25 | 13400 | 9000 | 6800 | 5200 | 3500 | 1950 | 1200 |
30 | 14200 | 9500 | 7400 | 5600 | 3800 | 2100 | 1300 |
35 | 15000 | 10000 | 8000 | 6000 | 4100 | 2250 | 1400 |
40 | 15800 | 10500 | 8600 | 6400 | 4400 | 2400 | 1500 |
Примечания:
|
Таблица 7.3. СП 24.13330.2021
Средняя глубина расположения слоя грунта, м | Расчетные сопротивления fi, кПа, на боковой поверхности забивных и вдавливаемых свай и свай-оболочек | ||||||||
песков средней плотности | |||||||||
крупных и средней крупности | мелких | пылеватых | – | – | – | – | – | – | |
глинистых грунтов при показателе текучести IL, равном | |||||||||
≤0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,0 | |
1 | 35 | 23 | 15 | 12 | 8 | 4 | 4 | 3 | 2 |
2 | 42 | 30 | 21 | 17 | 12 | 7 | 5 | 4 | 4 |
3 | 48 | 35 | 25 | 20 | 14 | 8 | 7 | 6 | 5 |
4 | 53 | 38 | 27 | 22 | 16 | 9 | 8 | 7 | 5 |
5 | 56 | 40 | 29 | 24 | 17 | 10 | 8 | 7 | 6 |
6 | 58 | 42 | 31 | 25 | 18 | 10 | 8 | 7 | 6 |
8 | 62 | 44 | 33 | 26 | 19 | 10 | 8 | 7 | 6 |
10 | 65 | 46 | 34 | 27 | 19 | 10 | 8 | 7 | 6 |
15 | 72 | 51 | 38 | 28 | 20 | 11 | 8 | 7 | 6 |
20 | 79 | 56 | 41 | 30 | 20 | 12 | 8 | 7 | 6 |
25 | 86 | 61 | 44 | 32 | 20 | 12 | 8 | 7 | 6 |
30 | 93 | 66 | 47 | 34 | 21 | 12 | 9 | 8 | 7 |
35 | 100 | 70 | 50 | 36 | 22 | 13 | 9 | 8 | 7 |
40 | 107 | 74 | 53 | 38 | 23 | 14 | 9 | 8 | 7 |
Примечания:
|
Таблица 7.4. СП 24.13330.2021
Способ погружения забивных и вдавливаемых свай и свай-оболочек, погружаемых без выемки грунта, и виды грунтов | Коэффициент условий работы грунта при расчете несущей способности свай | |
под нижним концом γR,R | на боковой поверхности γR,f | |
1 Погружение сплошных и полых с закрытым нижним концом свай механическими (подвесными), паровоздушными и дизельными молотами | 1,0 | 1,0 |
2 Погружение забивкой и вдавливанием в предварительно пробуренные лидерные скважины с заглублением концов свай не менее 1 м ниже забоя скважины при ее диаметре: | ||
а) равном стороне квадратной сваи или диаметру сваи круглого сечения | 1,0 | 0,5 |
б) на 0,05 м менее стороны квадратной сваи или диаметра сваи круглого сечения | 1,0 | 0,6 |
в) на 0,15 м менее стороны квадратной сваи или диаметра сваи круглого сечения | 1,0 | 1,0 |
3 Погружение с подмывом в песчаные грунты при условии добивки свай на последнем этапе погружения без применения подмыва на 1 м и более | 1,0 | 0,9 |
4 Вибропогружение свай-оболочек, вибропогружение и вибровдавливание свай в грунты: | ||
а) пески средней плотности: | ||
крупные и средней крупности | 1,2 | 1,0 |
мелкие | 1,1 | 1,0 |
пылеватые | 1,0 | 1,0 |
б) глинистые с показателем текучести IL = 0,5: | ||
супеси | 0,9 | 0,9 |
суглинки | 0,8 | 0,9 |
глины | 0,7 | 0,9 |
в) глинистые с показателем текучести IL ≤ 0 | 1,0 | 1,0 |
5 Погружение молотами полых железобетонных свай с открытым нижним концом: | ||
а) при диаметре полости сваи менее 0,4 м | 1,0 | 1,0 |
б) то же, от 0,4 до 0,8 м | 0,7 | 1,0 |
6 Погружение любым способом полых свай круглого сечения с закрытым нижним концом на глубину 10 м и более с последующим устройством в нижнем конце свай камуфлетного уширения в песчаных грунтах средней плотности и в глинистых грунтах с показателем текучести IL ≤ 0,5 при диаметре уширения, равном: | ||
а) 1,0 м независимо от указанных видов грунта | 0,9 | 1,0 |
б) 1,5 м в песках и супесях | 0,8 | 1,0 |
в) 1,5 м в суглинках и глинах | 0,7 | 1,0 |
7 Погружение вдавливанием свай: | ||
а) в пески крупные, средней крупности и мелкие | 1,1 | 1,0 |
б) в пески пылеватые | 1,1 | 0,8 |
в) в глинистые грунты с показателем текучести IL < 0,5 | 1,1 | 1,0 |
г) то же, IL ≥ 0,5 | 1,0 | 1,0 |
Примечание. Коэффициенты γR,R и γR,f по пункту 4 настоящей таблицы для глинистых грунтов с показателем текучести 0,5 > IL > 0 определяют интерполяцией. |
7.2.5 Опирание нижних концов забивных и вдавливаемых свай на рыхлые пески или на глинистые грунты с показателем текучести IL > 0,6, не рекомендуется. В случае, если принимается такое техническое решение, несущую способность Fd, кН, следует подтверждать результатами контрольных статических испытаний свай в соответствии с ГОСТ 5686.
7.2.6 Несущую способность пирамидальной, трапецеидальной и ромбовидной свай, прорезающих песчаные и глинистые грунты, Fd, кН, с наклоном боковых граней ip ≤ 0,025 следует определять по формуле
где γc, R, A, hi, fi, γR,R, γR,f – см. формулу (7.9);
ui – наружный периметр i-го сечения сваи, м;
u0,i – сумма размеров сторон i-го поперечного сечения сваи, м, имеющих наклон к оси сваи;
ip – наклон боковых граней сваи, дол. ед.;
Ei – модуль деформации слоя грунта, окружающего боковую поверхность сваи, кПа, определяемый по результатам компрессионных испытаний;
ki – коэффициент, зависящий от вида грунта и принимаемый по таблице 7.5;
ζr – реологический коэффициент, принимаемый равным 0,8.
Таблица 7.5. СП 24.13330.2021
7.2.7 Несущую способность Fdu, кН, висячей забивной и вдавливаемой свай и сваи-оболочки, погружаемой без выемки грунта, работающих на выдергивающую нагрузку, следует определять по формуле
где u, γR,f, fi, hi – см. формулу (7.9);
γc – коэффициент условий работы сваи в грунте (для свай, погружаемых в грунт на глубину менее 4 м, γc = 0,6, на глубину 4 м и более γc = 0,8 – для всех сооружений).
Примечания:
- В формулах (7.11) и (7.16) следует принимать для нормальных промежуточных опор линий электропередачи γc = 1,2, для анкерных и угловых опор γc = 1,0, если удерживающая сила веса свай и ростверка равна расчетной выдергивающей нагрузке γc = 1,0, если удерживающая сила составляет 65% и менее расчетной выдергивающей нагрузки γc = 0,6, а в остальных случаях по интерполяции.
- В фундаментах опор мостов не допускается работа свай на выдергивание при основном сочетании нагрузок, включающем только постоянные нагрузки и воздействия.
7.2.8 Несущую способность свай и баретт длиной свыше 40 м следует определять на основании численных расчетов с учетом 7.2.15. При этом начальное напряженное состояние массива грунта рекомендуется определять с учетом OCR по ГОСТ Р 58326 в соответствии с 7.7.13.
7.2.9 Предварительно значение ожидаемого максимального вдавливающего усилия при погружении свай вдавливанием следует принимать по формуле
где k – эмпирический коэффициент, определенный на основании сопоставления результатов значений несущей способности свай по ГОСТ 5686 и максимального усилия вдавливания при погружении свай. Допускается принимать величину k равной 1,6 для песков пылеватых, мелких и средней плотности и 2,0 – для плотных песков, для пылевато-глинистых грунтов с E более 12 МПа – 1,3 и 1,1 для грунтов с E менее 12 МПа.
Висячие набивные, буровые и сваи-оболочки, погружаемые с выемкой грунта и заполняемые бетоном (сваи трения)
7.2.10 Несущую способность Fd, кН, набивной и буровой свай с уширением и без уширения, а также сваи-оболочки, погружаемой с выемкой грунта и заполняемой бетоном, работающих на сжимающую нагрузку, следует определять по формуле
где γc – коэффициент условий работы сваи; в случае опирания ее на глинистые грунты со степенью влажности Sr < 0,85 и на лессовые грунты – γc = 0,8, в остальных случаях – γc = 1;
γR,R – коэффициент надежности по сопротивлению грунта под нижним концом сваи; γR,R = 1 во всех случаях, за исключением свай с камуфлетными уширениями и буроинъекционных свай по перечислению е) 6.5, для которых этот коэффициент следует принимать равным 1,3, и свай с уширением, устраиваемых путем механического разбуривания грунта, бетонируемых насухо γR,R = 0,5 и бетонируемых подводным способом, для которых γR,R = 0,3;
R – расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое по 7.2.11; для набивной сваи, изготавливаемой по технологии, указанной в перечислениях а), б) 6.4 – по таблице 7.2;
A – площадь опирания сваи, м2, принимаемая равной:
u – периметр поперечного сечения ствола сваи, м;
γR,f – коэффициент условий работы грунта на боковой поверхности сваи, зависящий от способа образования скважины и условий бетонирования и принимаемый по таблице 7.6;
fi – расчетное сопротивление i-го слоя грунта на боковой поверхности ствола сваи, кПа, принимаемое по таблице 7.3;
hi – см. формулу (7.9).
Площадь опирания буроинъекционной сваи следует принимать по площади поперечного сечения уширения, а периметр поперечного сечения ствола – исходя из среднего значения диаметров dij сваи, которые следует определять по объему бетонной смеси, израсходованной на заполнение j-го разрядно-импульсного уширения в i-м слое грунта. Заданные в проекте уширения сваи уточняют при изготовлении опытных свай в конкретных грунтовых условиях.
Примечание.Для свай с уширением, устраиваемых путем механического разбуривания грунта, при наличии данных видеообследования скважин или результатов обследования скважин, указывающих на отсутствие бурового шлама на уровнях подошвы уширения скважин и дна приямка ниже уширения, допускается принимать:
Таблица 7.6. СП 24.13330.2021
Тип свай и способы их устройства | Коэффициент условий работы сваи γR,f | |||
песках | супесях | суглинках | глинах | |
1 Набивные, а также сваи, устраиваемые с вытеснением грунта по перечислению а) 6.4 при погружении инвентарной трубы с теряемым наконечником или бетонной пробкой | 1 | 1 | 1 | 0,9 |
2 Набивные виброштампованные | 0,9 | 0,9 | 0,9 | 0,9 |
3 Буровые, в том числе с уширением, бетонируемые: | ||||
а) при отсутствии воды в скважине (сухим способом) и при использовании обсадных инвентарных труб, а также при выполнении их методом непрерывно перемещающегося шнека (НПШ) | 0,7 | 0,7 | 0,7 | 0,6 |
б) под водой или под глинистым раствором | 0,6 | 0,6 | 0,6 | 0,6 |
в) жесткими бетонными смесями, укладываемыми с помощью глубинной вибрации (сухим способом) | 0,8 | 0,8 | 0,8 | 0,7 |
4 Бареты по перечислению в) 6.5 | 0,6 | 0,6 | 0,6 | 0,6 |
5 Сваи-оболочки, погружаемые вибрированием с выемкой грунта | 1,0 | 0,9 | 0,7 | 0,6 |
6 Сваи-столбы | 0,7 | 0,7 | 0,7 | 0,6 |
7 Буроинъекционные, изготовляемые под защитой обсадных труб или бентонитового раствора с опрессовкой давлением 200-400 кПа (2-4 атм), а также при выполнении их с инъекцией бетонной смеси через колонну проходных полых шнеков | 0,9 | 0,8 | 0,8 | 0,8 |
8 Буроинъекционные сваи, устраиваемые с использованием разрядно-импульсной технологии по перечислению е) 6.5 | 1,3 | 1,3 | 1,1 | 1,1 |
7.2.11 Расчетное сопротивление R, кПа, грунта под нижним концом сваи следует принимать:
где α1, α2, α3, α4 – безразмерные коэффициенты, принимаемые по таблице 7.7 в зависимости от расчетного значения угла внутреннего трения грунта основания;
γ’1 – расчетное значение удельного веса грунта, кН/м3, в основании сваи (при водонасыщенных грунтах с учетом взвешивающего действия воды);
γ1 – осредненное (по слоям) расчетное значение удельного веса грунтов, кН/м3, расположенных выше нижнего конца сваи (при водонасыщенных грунтах с учетом взвешивающего действия воды);
d – диаметр, м, набивной и буровой свай, диаметр уширения (для сваи с уширением), сваи-оболочки или диаметр скважины для сваи-столба, омоноличенного в грунте цементно-песчаным раствором;
h – глубина заложения, м, нижнего конца сваи или ее уширения, отсчитываемая от природного рельефа или уровня планировки (при планировке срезкой), для опор мостов – от дна водоема после его общего размыва при расчетном паводке;
Таблица 7.7. СП 24.13330.2021
Коэффициент | Расчетные значения угла внутреннего трения грунта φ | ||||||||
23° | 25° | 27° | 29° | 31° | 33° | 35° | 37° | 39° | |
α1 | 9,5 | 12,6 | 17,3 | 24,4 | 34,6 | 48,6 | 71,3 | 108,0 | 163,0 |
α2 | 18,6 | 24,8 | 32,8 | 45,5 | 64,0 | 87,6 | 127,0 | 185,0 | 260,0 |
α3 при h/d, равном: | |||||||||
4,0 | 0,78 | 0,79 | 0,80 | 0,82 | 0,84 | 0,85 | 0,85 | 0,85 | 0,87 |
5,0 | 0,75 | 0,76 | 0,77 | 0,79 | 0,81 | 0,82 | 0,83 | 0,84 | 0,85 |
7,5 | 0,68 | 0,70 | 0,71 | 0,74 | 0,76 | 0,78 | 0,80 | 0,82 | 0,84 |
10,0 | 0,62 | 0,65 | 0,67 | 0,70 | 0,73 | 0,75 | 0,77 | 0,79 | 0,81 |
12,5 | 0,58 | 0,61 | 0,63 | 0,67 | 0,70 | 0,73 | 0,75 | 0,78 | 0,80 |
15,0 | 0,55 | 0,58 | 0,61 | 0,65 | 0,68 | 0,71 | 0,73 | 0,76 | 0,79 |
17,5 | 0,51 | 0,55 | 0,58 | 0,62 | 0,66 | 0,69 | 0,72 | 0,75 | 0,78 |
20,0 | 0,49 | 0,53 | 0,57 | 0,61 | 0,65 | 0,68 | 0,72 | 0,75 | 0,78 |
22,5 | 0,46 | 0,51 | 0,55 | 0,60 | 0,64 | 0,67 | 0,71 | 0,74 | 0,77 |
25,0 и более | 0,44 | 0,49 | 0,54 | 0,59 | 0,63 | 0,67 | 0,70 | 0,74 | 0,77 |
α4 при d, равном, м: | |||||||||
0,8 и менее | 0,34 | 0,31 | 0,29 | 0,27 | 0,26 | 0,25 | 0,24 | 0,23 | 0,22 |
4,0 | 0,25 | 0,24 | 0,23 | 0,22 | 0,21 | 0,20 | 0,19 | 0,18 | 0,17 |
Примечания:
|
Таблица 7.8. СП 24.13330.2021
Глубина заложения нижнего конца сваи h, м | Расчетное сопротивление R, кПа, под нижним концом набивных и буровых свай и свай-оболочек, погружаемых с выемкой грунта и заполняемых бетоном, при глинистых грунтах, за исключением просадочных, с показателем текучести IL, равным | ||||||
0,0 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | |
3 | 850 | 750 | 650 | 500 | 400 | 300 | 250 |
5 | 1000 | 850 | 750 | 650 | 500 | 400 | 350 |
7 | 1150 | 1000 | 850 | 750 | 600 | 500 | 450 |
10 | 1350 | 1200 | 1050 | 950 | 800 | 700 | 600 |
12 | 1550 | 1400 | 1250 | 1100 | 950 | 800 | 700 |
15 | 1800 | 1650 | 1500 | 1300 | 1100 | 1000 | 800 |
18 | 2100 | 1900 | 1700 | 1500 | 1300 | 1150 | 950 |
20 | 2300 | 2100 | 1900 | 1650 | 1450 | 1250 | 1050 |
30 | 3300 | 3000 | 2600 | 2300 | 2000 | – | – |
≥ 40 | 4500 | 4000 | 3500 | 3000 | 2500 | – | – |
Примечания:
|
7.2.12 Расчетное сопротивление R, кПа, грунта под нижним концом сваи-оболочки, погружаемой с частичной выемкой грунта, но с сохранением грунтового ядра высотой не менее трех диаметров оболочки на последнем этапе ее погружения (при условии, что грунтовое ядро образовано из грунта, имеющего те же характеристики, что и грунт под нижним концом сваи-оболочки), следует принимать по таблице 7.
2 с коэффициентом условий работы грунта, учитывающим способ погружения свай-оболочек в соответствии с пунктом 4 таблицы 7.4, при этом расчетное сопротивление в указанном случае относится к площади поперечного сечения сваи-оболочки нетто.
7.2.13 Несущую способность Fdu, кН, набивной и буровой свай и сваи-оболочки, работающих на выдергивающие нагрузки, следует определять по формуле
где γc – см. формулу (7.11);
u, γR,f, fi, hi – см. формулу (7.13).
7.2.14 Для набивных и буровых свай и свай-оболочек, погружаемых с выемкой грунта и заполняемых бетоном, опирающихся нижним концом на глинистые грунты с показателем текучести IL > 0,6, несущую способность следует определять по результатам статических испытаний свай в соответствии с ГОСТ 5686.
7.2.15 Несущую способность свай длиной более 40 м следует определять компьютерными расчетами на основании построения графика “осадка-нагрузка”. При этом за величину несущей способности свай следует принимать нагрузку на сваю при расчетной величине осадки, равной 4 см.
Винтовые сваи
7.2.16 Несущую способность Fd, кН, винтовой однолопастной сваи диаметром лопасти d ≤ 1,2 м и длиной l ≤ 10 м, работающей на вдавливающую или выдергивающую нагрузку, следует определять по формуле (7.17) (при других параметрах, в частности при двух и более лопастях, диаметре лопасти d >
1,2 м и погруженной длине сваи l > 10 м, действии горизонтальной силы или момента, – по данным испытаний сваи статической нагрузкой или результатам численных расчетов в нелинейной постановке с использованием апробированных моделей грунта)
где γc – коэффициент условий работы сваи, зависящий от вида нагрузки, действующей на сваю, и грунтовых условий и определяемый по таблице 7.9;
γR,R, γR,f – коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта. Следует принимать γR,R = 1, а γR,f = 1 во всех случаях, кроме устройства лидерных скважин, для которых следует руководствоваться пунктом 2 таблицы 7.4;
Fd0 – несущая способность лопасти, кН;
Fdf – несущая способность ствола, кН.
Несущая способность лопасти винтовой сваи определяется по формуле
где α1, α2 – безразмерные коэффициенты, принимаемые по таблице 7.10 в зависимости от расчетного значения угла внутреннего трения грунта в рабочей зоне φI (под рабочей зоной понимается прилегающий к лопасти слой грунта толщиной, равной d);
c1 – расчетное значение удельного сцепления грунта в рабочей зоне, кПа;
γ1 – осредненное расчетное значение удельного веса грунтов, залегающих выше лопасти сваи (при водонасыщенных грунтах с учетом взвешивающего действия воды), кН/м3;
h1 – глубина залегания лопасти сваи от природного рельефа, а при планировке территории срезкой – от уровня планировки, м;
A – проекция площади лопасти, м2, считая по наружному диаметру, при работе винтовой сваи на сжимающую нагрузку, и проекция рабочей площади лопасти, т.е. за вычетом площади сечения ствола, при работе винтовой сваи на выдергивающую нагрузку.
Несущая способность ствола винтовой сваи определяется по формуле
где u – периметр поперечного сечения ствола сваи, м;
fi – расчетное сопротивление грунта на боковой поверхности ствола винтовой сваи, кПа, принимаемое по таблице 7.3 (осредненное значение для всех слоев в пределах глубины погружения сваи);
h – длина ствола сваи, погруженная в грунт, м;
d – диаметр лопасти сваи, м.
Таблица 7.9. СП 24.13330.2021
Вид грунта | Коэффициент условий работы винтовых свай γc при нагрузках | ||
сжимающих | выдергивающих | знакопеременных | |
1 Глины и суглинки: | |||
а) твердые, полутвердые и тугопластичные | 0,8 | 0,7 | 0,7 |
б) мягкопластичные | 0,8 | 0,7 | 0,6 |
в) текучепластичные | 0,7 | 0,6 | 0,4 |
2 Пески и супеси: | |||
а) пески маловлажные и супеси твердые | 0,8 | 0,7 | 0,5 |
б) пески влажные и супеси пластичные | 0,7 | 0,6 | 0,4 |
в) пески водонасыщенные и супеси текучие | 0,6 | 0,5 | 0,3 |
Примечание. При определении коэффициентов условий работы γc для свай, работающих только на сжимающие нагрузки и силы пучения, значения коэффициента γc следует принимать по графе “сжимающих”, если по величине силы пучения не превышают 15% от сжимающих нагрузок и по графе “знакопеременных” в иных случаях. |
Таблица 7.10. СП 24.13330.2021
Расчетное значение угла внутреннего трения грунта в рабочей зоне φI | Коэффициенты | Расчетное значение угла внутреннего трения грунта в рабочей зоне φI | Коэффициенты | ||
α1 | α2 | α1 | α2 | ||
13° | 7,8 | 2,8 | 24° | 18,0 | 9,2 |
15° | 8,4 | 3,3 | 26° | 23,1 | 12,3 |
16° | 9,4 | 3,8 | 28° | 29,5 | 16,5 |
18° | 10,1 | 4,5 | 30° | 38,0 | 22,5 |
20° | 12,1 | 5,5 | 32° | 48,4 | 31,0 |
22° | 15,0 | 7,0 | 34° | 64,9 | 44,4 |
Стальные трубчатые сваи
7.2.17 Допускается применение стальных трубчатых свай с открытым и закрытым концами.
Стальные трубчатые сваи с открытым и закрытым концами с учетом сопротивления грунта под нижним торцом трубы сваи и сопротивления грунта по внешней боковой поверхности сваи.
Несущая способность свай из стальных труб, погружаемых с открытым нижним концом, работающих на вдавливающую нагрузку, должна определяться по результатам статических испытаний. Для назначения нагрузки при проведении статических испытаний стальных трубчатых свай, погружаемых с открытым концом, следует рассматривать два варианта работы сваи в предельном состоянии:
Искомая величина несущей способности свай из стальных труб, погружаемых с открытым нижним концом, работающих на вдавливающую нагрузку, должна приниматься наименьшей из рассматриваемых вариантов.
7.2.18 Сваи из стальных труб следует проектировать диаметром и толщиной стенки достаточными для обеспечения их прочности и устойчивости, а также несущей способности но грунту основания при действии на них нагрузок, которые могут возникать в процессе производства работ по погружению труб и при их эксплуатации. Внешний диаметр труб по всей длине свай должен быть одинаковым. Устройство колец жесткости на конце труб запрещается.
7.2.19 При определении несущей способности стальной трубчатой сваи с открытым нижним концом необходимо использовать расчетные сопротивления грунта под нижним концом сваи и на боковой поверхности с учетом формулы (7.9) и 7.2.
17, 7.2.20. К расчетным сопротивлениям следует вводить соответствующие понижающие коэффициенты условий работы, характерные для стальных трубчатых свай. Расчет на выдергивающие нагрузки стальной трубчатой сваи с открытым нижним концом должен выполняться с учетом формулы (7.11) и 7.2.20.
Примечание.Определение несущей способности стальной трубчатой сваи с открытым нижним концом при опирании на скальные или слабодеформируемые грунты допускается только по результатам статических испытаний.
7.2.20 При определении несущей способности стальной трубчатой сваи с открытым нижним концом коэффициент условий работы грунта под нижним концом грунтовой пробки γR,R принимается равным 0,5, а коэффициент условий работы грунта на боковой поверхности (наружной или внутренней) сваи γR,f, учитывающий вид грунта в слоях, принимается равным: 0,52 – для песчаных слоев грунта; 0,43 – для глинистых слоев грунта; 0,47 – для супесчаных слоев грунта.
7.2.21 Контроль несущей способности каждой производственной сваи следует предусматривать на основании результатов их динамических испытаний с одновременной обработкой этих результатов в соответствии с положениями волновой теории удара и данными, полученными при статических испытаниях опытных свай в соответствии с ГОСТ 5686.
7.2.22 Оборудование для забивки свай должно выбираться одновременно с выбором их размеров. Напряжения, возникающие при забивке свай, не должны превышать 0,8 значения предела текучести стали.
Комбинированные сваи
7.2.23 Комбинированные сваи могут устраиваться как непосредственно после устройства элемента по струйной технологии, пока грунтоцемент находится в жидком состоянии, так и после его твердения. В первом случае в качестве инвентарного элемента могут быть использованы металлические элементы (трубы, дутавры).
7.2.24 Элементы, устраиваемые по струйной технологии, эффективны для увеличения несущей способности свай по грунту при существенных запасах прочности по материалу инвентарного элемента свай. Прочностные характеристики грунтоцементных элементов должны назначаться в зависимости от грунтовых условий и расхода цемента.
Значения прочностных характеристик закрепленного массива грунта следует принимать в соответствии с СП 291.1325800 и подтверждать в ходе опытных и опытно-производственных работ. Объемы работ такого вида следует назначать при разработке проекта фундаментов.
7.2.25 В общем случае при устройстве комбинированных свай размер сердечника (d – круглой формы и b – квадратной) связан с диаметром грунтоцементной сваи D следующими соотношениями:
7.2.26 Несущая способность комбинированных свай должна определяться на основании статических испытаний. Назначение нагрузки для проведения испытаний следует проводить по таблицам 7.8 и 7.9, принимая γR,R = 1.
Трение (сопротивление) по боковой поверхности комбинированных свай должно определяться по таблице 7.2, при этом коэффициент условий работы по боковой поверхности комбинированной сваи с применением струйной технологии γR,f должен приниматься равным 0,85, а при устройстве бетонных элементов по таблице 7.6 – в зависимости от применяемой технологии.
7.2.27 Расчеты прочности по материалу комбинированных свай следует проводить исходя из обеспечения прочности:
Примечание.Численное моделирование элементов, закрепленных по струйной или буросмесительной технологии, рекомендуется выполнять с использованием расчетных моделей – идеальной упруго-пластичной модели и модели, в основе которой заложен нелинейный критерий прочности на сдвиг, разработанной специально для скальных грунтов.
7.2.28 Для защиты от коррозии металлической трубы в составе комбинированной сваи ее поверхность следует покрывать снаружи материалом, обладающим фрикционными свойствами для повышения несущей способности сваи. В качестве такого покрытия допускается использовать лакокрасочные материалы (эпоксидные или другого типа в соответствии с СП 28.13330) с введением в нее по массе 50%…70% песка крупностью 1…2 мм или рукав из тканого полимерного материала.
7.2.29 Испытание на выдергивание комбинированных свай с применением грунтоцементных элементов должно проводиться не ранее 14 сут в песчаных грунтах и 28 сут в глинистых грунтах после их устройства.
Учет отрицательного (негативного) трения грунта на боковой поверхности свай
7.2.30 Основание, в котором расположены сваи, может испытывать деформации из-за консолидации, набухания, пригрузки смежных областей и т. д. Отрицательное (негативное) трение, возникающее на боковой поверхности свай при осадке околосвайного грунта и направленное вертикально вниз, следует учитывать в случаях:
Примечание.Отрицательные силы трения, возникающие в просадочных грунтах, следует учитывать в соответствии с разделом 9.
7.2.31 Отрицательное трение учитывают до глубины, на которой значение осадки околосвайного грунта после возведения и загрузки свайного фундамента (в соответствии СП 22.13330) превышает половину предельного значения осадки для проектируемого сооружения.
Расчетные сопротивления грунта fi принимают по таблице 7.3 со знаком «минус», а для торфа, ила, сапропеля – минус 5 кПа (рисунок 7.3, а). Если в пределах длины погруженной части сваи залегают напластования торфа толщиной более 30 см и возможна планировка территории подсыпкой или иная ее загрузка, эквивалентная подсыпке, то расчетное сопротивление грунта fi, расположенного выше подошвы низшего (в пределах длины погруженной части сваи) слоя торфа, следует принимать:
- а) при подсыпках высотой менее 2 м для грунтовой подсыпки и слоев торфа – равным нулю, для минеральных ненасыпных грунтов природного сложения – значениям по таблице 7.3 (рисунок 7.3, б);
- б) при подсыпках высотой от 2 до 5 м для грунтов, включая подсыпку, равным 0,4 значений, указанных в таблице 7.3, но со знаком «минус», а для торфа – минус 5 кПа (отрицательные силы трения) (рисунок 7.3, в);
- в) при подсыпках высотой более 5 м для грунтов, включая подсыпку, равным значениям, указанным в таблице 7.3, но со знаком «минус», а для торфа – минус 5 кПа (рисунок 7.3, г).
Примечание.Осадку околосвайного грунта допускается определять методом послойного суммирования в соответствии с СП 22.13330 без учета наличия свай или путем проведения численных расчетов.
7.2.32 В случае когда консолидация грунта от подсыпки или пригрузки территории к моменту начала возведения надземной части сооружений (включая свайный ростверк) завершилась или возможное значение осадки грунта, окружающего сваи, после указанного момента в результате остаточной консолидации не превышает половины предельного значения осадки для проектируемого сооружения, сопротивление грунта на боковой поверхности сваи допускается принимать положительным вне зависимости от наличия или отсутствия прослоек торфа. Для прослоек торфа значение fi следует принимать равным 5 кПа.
Если известны значения коэффициентов консолидации и модуля деформации торфов, залегающих в пределах длины погруженной части сваи, и возможно определение значения осадки основания от воздействия пригрузки территории для каждого слоя грунта, то при определении несущей способности сваи допускается учитывать силы сопротивления грунта с отрицательным знаком (отрицательные силы трения) не от уровня подошвы нижнего слоя торфа, а начиная от верхнего уровня слоя грунта, значение дополнительной осадки которого от пригрузки территории (определенной начиная с момента передачи на сваю расчетной нагрузки) составляет половину предельного значения осадки для проектируемого сооружения.
3 Определение несущей способности свай по результатам полевых испытаний
7.3.1 Несущая способность свай в полевых условиях может быть определена следующими методами: статическими и динамическими испытаниями свай, испытаниями грунтов эталонной сваей, испытаниями грунтов статическим зондированием. Количество испытаний свай определяется проектом в зависимости от сложности грунтовых условий, величины нагрузок, передаваемых на основание и числа типоразмеров свай.
https://www.youtube.com/watch?v=mkr3IF2apKE
7.3.2 Испытания свай статической и динамической нагрузками и испытания грунтов эталонной сваей следует выполнять, соблюдая ГОСТ 5686, а испытания грунтов статическим зондированием – ГОСТ 19912.
7.3.3 Несущую способность Fd, кН, свай по результатам их испытаний вдавливающей, выдергивающей и горизонтальной статическими нагрузками, а также по результатам их динамических испытаний следует определять по формуле
где γc – коэффициент условий работы сваи; в случае вдавливающих или горизонтальных нагрузок γc = 1; в случае выдергивающих нагрузок γc принимают по 7.2.7;
Fu,n – нормативное значение предельного сопротивления сваи, кН, определяемое в соответствии с 7.3.4 – 7.3.7, а также 7.3.9 – 7.3.11;
γc,g1 – коэффициент надежности по грунту, принимаемый по 7.3.4.
Примечание.Результаты статических испытаний свай на горизонтальные нагрузки могут быть использованы для непосредственного определения расчетной нагрузки, допускаемой на сваю, если условия испытаний соответствуют действительным условиям работы сваи в фундаменте сооружения.
7.3.4 В случае если число одинаковых свай, испытанных в одинаковых грунтовых условиях, составляет менее шести, нормативное значение предельного сопротивления сваи в формуле (7.20) следует принимать равным наименьшему предельному сопротивлению, полученному из результатов испытаний, т. е.
В случае если число свай, испытанных в одинаковых условиях, составляет шесть и более, Fu,n и γc,g1 следует определять на основании результатов статистической обработки частных значений предельных сопротивлений свай Fu, полученных по данным испытаний при значении доверительной вероятности α = 0,95.
Примечание.При обосновании допускается проведение испытания одной сваи в месте, с наиболее неблагоприятными условиями на участке строительства.
7.3.5 Если нагрузка при статическом испытании свай на вдавливание доведена до величины, вызывающей непрерывное возрастание их осадки s без увеличения нагрузки (при s ≤ 20 мм), то за частное значение предельного сопротивления Fu испытуемой сваи принимают нагрузку, зарегистрированную при предыдущей ступени загружения.
Во всех остальных случаях для фундаментов сооружений (кроме мостов и гидротехнических сооружений) за частное значение предельного сопротивления сваи Fu вдавливающей нагрузке следует принимать нагрузку, под воздействием которой испытуемая свая получает осадку, равную s, определяемую по формуле
где ζ – коэффициент перехода от предельного значения средней осадки фундамента сооружения su,mt к осадке сваи, полученной при статических испытаниях с условной стабилизацией (затуханием) осадки;
su,mt – предельное значение средней осадки фундамента проектируемого сооружения, устанавливаемое по СП 22.13330 как для объекта нового строительства.
Примечание.
Для реконструируемых сооружений значение s по формуле (7.21) допускается ограничивать значением максимальной осадки приложению Е СП 22.13330.2022.
Значение коэффициента ζ следует принимать равным 0,2 в случаях, когда испытание свай проводят при условной стабилизации, равной 0,1 мм за 1 ч, если под их нижними концами залегают песчаные или глинистые грунты с консистенцией от твердой до тугопластичной, а также за 2 ч, если под их нижними концами залегают глинистые грунты от мягкопластичной до текучей консистенции.
Если осадка, определенная по формуле (7.21), составляет более 40 мм, то за частное значение предельного сопротивления сваи Fu следует принимать нагрузку, соответствующую s = 40 мм.
Для мостов и гидротехнических сооружений за предельное сопротивление сваи Fu при вдавливающих нагрузках следует принимать нагрузку на одну ступень менее нагрузки, при которой вызывается:
Если при максимальной достигнутой при испытаниях нагрузке, которая окажется равной или более 1,5Fd, где Fd – несущая способность сваи, рассчитанная по формулам (7.6), (7.9), (7.10), (7.13), (7.17) и (7.18), а осадка сваи s при испытаниях окажется менее значения, определенного по формуле (7.21), или для мостов и гидротехнических сооружений – менее 40 мм, то в этом случае за частное значение предельного сопротивления сваи Fu допускается принимать максимальную нагрузку, полученную при испытаниях такой сваи.
7.3.6 При испытании свай статической выдергивающей или горизонтальной нагрузкой за частное значение предельного сопротивления Fu (7.3.4) по графикам зависимости перемещений от нагрузок принимают нагрузку на одну ступень менее нагрузки, без увеличения которой перемещения сваи непрерывно возрастают.
Примечание.Результаты статических испытаний свай на горизонтальные нагрузки могут быть использованы для непосредственного определения расчетных параметров системы «свая – грунт», используемых в расчетах по приложению Б.
7.3.7 При динамических испытаниях забивных железобетонных и деревянных свай длиной не более 20 м частное значение предельного сопротивления Fu, кН (7.3.4), по данным их погружения при фактических (измеренных) остаточных отказах sa ≥ 0,002 м следует определять по формуле
Если фактический (измеренный) остаточный отказ sa < 0,002 м, то в проекте свайного фундамента следует предусматривать применение для погружения свай молота с большей энергией удара, при которой остаточный отказ будет sa ≥ 0,002 м, а в случае невозможности замены сваебойного оборудования и при наличии отказомеров частное значение предельного сопротивления сваи Fu, кН, следует определять по формуле
В формулах (7.22) и (7.23):
η – коэффициент, принимаемый по таблице 7.11 в зависимости от материала сваи, кН/м2;
A – площадь, ограниченная наружным контуром сплошного или полого поперечного сечения ствола сваи (независимо от наличия или отсутствия у сваи острия), м2;
M – коэффициент, принимаемый при забивке свай молотами ударного действия равным единице, а при вибропогружении свай – по таблице 7.12 в зависимости от вида грунта под их нижними концами;
Ed – расчетная энергия удара молота, кДж, принимаемая по таблице 7.13, или расчетная энергия вибропогружателей – по таблице 7.14;
sa – фактический остаточный отказ, равный значению погружения сваи от одного удара молота, а при применении вибропогружателей – от их работы в течение 1 мин, м;
sel – упругий отказ сваи (упругие перемещения грунта и сваи), определяемый с помощью отказомера, м;
m1 – масса молота или вибропогружателя, т;
m2 – масса сваи и наголовника, т;
m3 – масса подбабка (при вибропогружении свай m3 = 0), т;
m4 – масса ударной части молота, т;
ε – коэффициент восстановления удара; при забивке железобетонных свай молотами ударного действия с применением наголовника с деревянным вкладышем ε2 = 0,2, а при вибропогружателе ε2 = 0;
θ – коэффициент, 1/кН, определяемый по формуле
здесь A, m4, m2 – см. формулы (7.22) и (7.23);
np, nf – коэффициенты перехода от динамического (включающего вязкое сопротивление грунта) к статическому сопротивлению грунта, принимаемые соответственно равными: для грунта под нижним концом сваи np = 0,00025 с·м/кН и для грунта на боковой поверхности сваи nf = 0,025 с·м/кН;
Af – площадь боковой поверхности сваи, соприкасающейся с грунтом, м2;
g – ускорение свободного падения, равное 9,81 м/с2;
H – фактическая высота падения ударной части молота, м;
h – высота первого отскока ударной части дизель-молота, принимаемая согласно примечанию 2 к таблице 7.13, для других видов молотов h = 0.
Частные значения предельного сопротивления при динамических испытаниях железобетонных свай длиной свыше 20 м, а также стальных свай любой длины по измеренным остаточным и упругим отказам при их погружении молотами следует определять с помощью компьютерных программ, методы расчета забивки свай в которых основаны на волновой теории удара.
Примечание.При забивке свай в грунт, подлежащий удалению при разработке котлована, или в грунт дна водотока значение расчетного отказа следует определять исходя из несущей способности свай, вычисленной с учетом неудаленного или подверженного возможному размыву грунта, а в местах вероятного проявления отрицательных сил трения – с их учетом.
Таблица 7.11. СП 24.13330.2021
Таблица 7.12. СП 24.13330.2021
Таблица 7.13. СП 24.13330.2021
Вид молота | Расчетная энергия удара молота Ed, кДж |
1 Подвесной или одиночного действия | GHф |
2 Трубчатый дизель-молот | 0,9GHф |
3 Штанговый дизель-молот | 0,4GHф |
4 Дизельный при контрольной добивке одиночными ударами без подачи топлива | G(Hп – h) |
О б о з н а ч е н и я: Примечание. Среднее значение Hф за один залог из 10 ударов следует определять по формуле Hф = 0,0156t2, где t – время работы дизель-молота в залоге, фиксируемое секундомером с точностью до 0,1 с. Секундомер включают в момент первого удара и выключают на десятом ударе, не считая пускового. |
Таблица 7.14. СП 24.13330.2021
Возмущающая сила вибропогружателя, кН | Эквивалентная расчетная энергия удара вибропогружателя, кДж |
100 | 45,0 |
200 | 90,0 |
300 | 130,0 |
400 | 175,0 |
500 | 220,0 |
600 | 265,0 |
700 | 310,0 |
800 | 350,0 |
7.3.8 Несущую способность Fd, кН, забивной висячей сваи, работающей на вдавливающую нагрузку, по результатам испытаний грунтов эталонной сваей или статическим зондированием следует определять по формуле (7.20), в которой следует принять γc = 1.
При этом нормативное значение Fun определяют на основе частных значений предельного сопротивления сваи Fu, кН, в месте испытания грунтов эталонной сваей или зондированием, определенных в соответствии с 7.3.9, 7.3.10 или 7.3.11.
Коэффициент надежности по грунту γc,g определяют на основе статистической обработки частных значений предельного сопротивления сваи Fu в соответствии с 7.3.4.
7.3.9 Частное значение предельного сопротивления забивной сваи в месте испытания грунтов эталонной сваей Fu, кН, следует определять:
где γsp – коэффициент, принимаемый равным 1,25 при заглублении сваи в плотные пески независимо от их крупности или крупнообломочные грунты и равным 1,0 для остальных грунтов;
u, usp – периметры поперечного сечения применяемой сваи и эталонной;
Fu,sp – частное значение предельного сопротивления эталонной сваи, кН, определяемое по результатам испытания статической нагрузкой по 7.3.5;
где γR,R – коэффициент условий работы под нижним концом натурной сваи, принимаемый по таблице 7.15 в зависимости от предельного сопротивления грунта под нижним концом эталонной сваи Rsp;
Rsp – предельное сопротивление грунта под нижним концом эталонной сваи, кПа;
A – площадь поперечного сечения натурной сваи, м2;
γR,f – коэффициент условий работы на боковой поверхности натурной сваи, принимаемый по таблице 7.15 в зависимости от fsp;
fsp – среднее значение предельного сопротивления грунта на боковой поверхности эталонной сваи, кПа;
h – глубина погружения натурной сваи, м;
u – периметр поперечного сечения ствола сваи, м.
Примечание.При применении эталонной сваи типа II следует проверять соответствие суммы предельных сопротивлений грунта под нижним концом и на боковой поверхности эталонной сваи ее предельному сопротивлению. Если разница между ними превышает 20%, то расчет предельного сопротивления натурной сваи должен выполняться как для эталонной сваи типа I.
Таблица 7.15. СП 24.13330.2021
Rsp, кПа | Коэффициент γR,R в зависимости от Rsp | fsp, кПа | Коэффициент γR,f в зависимости от fsp для эталонных свай типов II и III | Коэффициент γR,f в зависимости от fsp для сваизонда | ||
для эталонных свай типа II | для эталонных свай типа III | при песках | при глинистых грунтах | |||
≤ 2000 | 1,15 | 1,40 | ≤ 20 | 2,00 | 1,20 | 0,90 |
3000 | 1,05 | 1,20 | 30 | 1,65 | 0,95 | 0,85 |
4000 | 1,00 | 0,90 | 40 | 1,40 | 0,80 | 0,80 |
5000 | 0,90 | 0,80 | 50 | 1,20 | 0,70 | 0,75 |
6000 | 0,80 | 0,75 | 60 | 1,05 | 0,65 | 0,70 |
7000 | 0,75 | 0,70 | 80 | 0,80 | 0,55 | – |
10000 | 0,65 | 0,60 | ≥ 120 | 0,50 | 0,40 | – |
≥ 13000 | 0,60 | 0,55 | – | – | – | – |
Примечания:
где ∑h’i, ∑h”i – суммарная толщина слоев соответственно песков и глинистых грунтов; γ’R,f, γ”R,f – коэффициенты условий работы эталонных свай соответственно в песках и глинистых грунтах. |
7.3.10 Частное значение предельного сопротивления забивной сваи в точке зондирования Fu, кН, следует определять по формуле
где Rs – предельное сопротивление грунта под нижним концом сваи по данным зондирования в рассматриваемой точке, кПа;
f – среднее значение предельного сопротивления грунта на боковой поверхности сваи по данным зондирования в рассматриваемой точке, кПа;
h – глубина погружения сваи от поверхности грунта около сваи, м;
u – периметр поперечного сечения ствола сваи, м.
Предельное сопротивление грунта под нижним концом забивной сваи Rs, кПа, по данным зондирования в рассматриваемой точке следует определять по формуле
где β1 – коэффициент перехода от qs к Rs, принимаемый по таблице 7.16 независимо от типа зонда по ГОСТ 19912;
qs – среднее значение сопротивления грунта, кПа, под наконечником зонда, полученное из опыта, на участке, расположенном в пределах одного диаметра d выше и четырех диаметров ниже отметки острия проектируемой сваи (где d – диаметр круглого или сторона квадратного, или бόльшая сторона прямоугольного сечения сваи, м).
Среднее значение предельного сопротивления грунта на боковой поверхности забивной сваи f, кПа, по данным зондирования грунта в рассматриваемой точке следует определять:
где β2, βi – коэффициенты, принимаемые по таблице 7.16;
fs – среднее значение сопротивления грунта на боковой поверхности зонда, кПа, определяемое как частное от деления измеренного общего сопротивления грунта на боковой поверхности зонда на площадь его боковой поверхности в пределах от поверхности грунта в точке зондирования до уровня расположения нижнего конца сваи в выбранном несущем слое;
fsi – среднее сопротивление i-го слоя грунта на боковой поверхности зонда, кПа;
hi – толщина i-го слоя грунта, м.
Таблица 7.16. СП 24.13330.2021
Среднее значение сопротивления грунта qs, кПа | Коэффициент перехода β1 от qs к Rs | Среднее значение сопротивления грунта fs, fsi, кПа | Коэффициент перехода β2 от fs к f для зонда типа I | Коэффициент перехода βi от fsi к f для зонда типа II или III | ||||
для забивных свай | для винтовых свай при нагрузке | при песчаных грунтах | при глинистых грунтах | |||||
сжимающей | выдергивающей | при песчаных грунтах | при глинистых грунтах | |||||
≤ 1000 | 0,90 | 0,50 | 0,40 | ≤ 20 | 2,40 | 1,50 | 0,75 | 1,00 |
2500 | 0,80 | 0,45 | 0,38 | 40 | 1,65 | 1,00 | 0,60 | 0,75 |
5000 | 0,65 | 0,32 | 0,27 | 60 | 1,20 | 0,75 | 0,55 | 0,60 |
7500 | 0,55 | 0,26 | 0,22 | 80 | 1,00 | 0,60 | 0,50 | 0,45 |
10000 | 0,45 | 0,23 | 0,19 | 100 | 0,85 | 0,50 | 0,45 | 0,40 |
15000 | 0,35 | – | – | ≥ 120 | 0,75 | 0,40 | 0,40 | 0,30 |
20000 | 0,30 | – | – | – | – | – | – | – |
≥ 30000 | 0,20 | – | – | – | – | – | – | – |
Примечание. Для винтовых свай в песчаных грунтах, насыщенных водой, значения коэффициента β1 должны быть уменьшены в два раза. |
7.3.11 Несущую способность винтовой сваи, работающей на сжимающую и выдергивающую нагрузки, по результатам статического зондирования следует определять по формуле (7.20), а частное значение предельного сопротивления сваи в точке зондирования – по формуле (7.27), где глубина принимается уменьшенной на значение диаметра лопасти.
Предельное сопротивление грунта под (над) лопастью сваи по данным зондирования грунта в рассматриваемой точке следует определять по формуле (7.28). В этом случае β1 – коэффициент, принимаемый по таблице 7.16 в зависимости от среднего значения сопротивления грунта под наконечником зонда в рабочей зоне, принимаемой равной диаметру лопасти.
7.3.12 Для буровой сваи, устраиваемой в соответствии с перечислением а) 6.5 и работающей на сжимающую нагрузку, несущую способность в точке зондирования Fdu, кН, допускается оценивать без использования данных о сопротивлении грунта на муфте трения установки статического зондирования, на основании расчета по формуле
где R – расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое по таблице 7.17 в зависимости от среднего сопротивления конуса зонда qc, кПа, на участке, расположенном в пределах одного диаметра выше и до двух диаметров ниже подошвы сваи;
A – площадь подошвы сваи, м2;
fi – среднее значение расчетного сопротивления грунта на боковой поверхности сваи, кПа, на расчетном участке hi сваи, определяемое по данным зондирования в соответствии с таблицей 7.17;
hi – толщина i-го слоя грунта, которая должна приниматься не более 2 м;
γR,f – коэффициент работы, зависящий от технологии изготовления сваи и принимаемый:
7.3.13 Несущую способность Fd, кН, свай по результатам их расчетов по формуле (7.31), основанной на данных статического зондирования конусом, следует определять как среднее значение из частных значений Fdu для всех точек зондирования.
7.3.14 Для буровых свай, воспринимающих значительные вертикальные нагрузки, рекомендуется параллельно с расчетом несущей способности сваи по результатам статического зондирования проводить расчет несущей способности сваи по грунту в соответствии с подразделом 7.2. При расхождениях в полученных значениях несущей способности свай более 25% следует выполнять статические испытания свай.
Таблица 7.17. СП 24.13330.2021
7.3.15 При наличии на площадке данных испытаний статической нагрузкой на вдавливание от 3 до 5 забивных свай в одинаковых грунтовых условиях, а также результатов статического зондирования (шесть и более испытаний), и если результаты расчетов отличаются между собой не более чем на 25%, несущую способность определяют по формуле
где
γc,g – коэффициент надежности по грунту, определяемый по результатам зондирования по формуле
где Vs – коэффициент вариации частных значений предельного сопротивления сваи, рассчитанных по данным зондирования.
Отличная статья по вентиляции квартир
ЧТО ТАКОЕ ВЕНТИЛЯЦИЯ И ДЛЯ ЧЕГО ОНА НУЖНА ?
КАК ПРОВЕРИТЬ РАБОТОСПОСОБНОСТЬ ?
КАК НЕ ОСТАТЬСЯ БЕЗ ВОЗДУХА?
НЕМНОГО О ТОНКОСТЯХ…
“ЗНАМЕНИТАЯ” ПРОБЛЕМА ПОСЛЕДНИХ ЭТАЖЕЙ
САМОЕ РАСПРОСТРАНЁННОЕ ЗАБЛУЖДЕНИЕ
ПОЧЕМУ «ВДРУГ» ПЕРЕСТАЛА РАБОТАТЬ ВЕНТИЛЯЦИЯ?
ЧТО ТАКОЕ ВЕНТИЛЯЦИЯ И ДЛЯ ЧЕГО ОНА НУЖНА ?
Согласно существующим нормам, каждое жилое помещение (квартира) должно быть оборудовано вентиляцией, которая служит для удаления загрязнённого воздуха из нежилых помещений квартиры (кухня, ванная, туалет). Вентиляция – это движение воздуха, воздухообмен. Каждый человек на протяжении дня дышит, пользуется кухонной плитой, стирает или моется, ходит в туалет, многие курят. Все эти действия способствуют загрязнению воздуха в квартире и чрезмерному насыщению его влагой. Если вентиляция работает исправно, то мы всего этого не замечаем, но, если её работоспособность нарушена, то это выливается в большую проблему для живущих в такой квартире – начинают запотевать стёкла на окнах и конденсат стекает на подоконник и стену; отсыревают углы, а на стенах и потолке появляется плесень; бельё сохнет в ванной по 2-3 дня, а при пользовании туалетом запах расползается по всей квартире. Плюс ко всему, если в квартире без вентиляции находится грудной или совсем маленький ребёнок, то, иногда, одного-двух лет нахождения в таких условиях достаточно для того чтобы у него развилась бронхиальная астма или другие заболевания дыхательных путей.
Для того чтобы выяснить работает вентиляция или нет, не нужно быть специалистом. Возьмите небольшой кусочек туалетной бумаги. Приоткройте в любой комнате окно(форточку) и поднесите приготовленный кусок туалетной бумаги к вентиляционной решётке в ванной, кухне или туалете. Если листок притянуло – вентиляция работает. Если листок не держится на решётке и падает – вентиляция не работает. Если листок не притягивается, а наоборот отклоняется от вентиляционной решётки – значит, у вас обратная тяга и вы дышите посторонними запахами, а значит, вентиляция не работает.
КАК ПРОВЕРИТЬ РАБОТОСПОСОБНОСТЬ ?
Вентиляцию можно проверить, а можно измерить. Измеряют её специальным прибором – анемометром. Этот прибор показывает, с какой скоростью воздух движется в вентиляционном канале. Имея на руках расчётную таблицу, можно подставить в неё значения анемометра и сечение вашей вент.решётки и вы получите цифру, которая скажет о том, сколько кубических метров воздуха за один час (м³/ч) проходит через вент.решётку. Но это ещё не всё. При проверке существует множество условий, которые нельзя не принимать в расчёт, иначе данные измерений будут неверными.
Согласно «Методике испытания воздухообмена жилых зданий», замеры проводятся при разности температур внутреннего и наружного воздуха = 13ºС (пример: на улице 5ºС; в квартире 18ºС), и при этом на улице температура воздуха должна быть не выше 5ºС.
Дело в том, что в тёплый период года вентиляция работает хуже и с этим ничего нельзя поделать, потому что таковы законы физики на этой планете. Если измерять вентиляцию при более тёплой температуре чем 5ºС, то полученные данные измерений будут некорректными. И чем теплее будет температура наружного воздуха, тем дальше будут данные измерений от нормативных. В сильную жару, в некоторых случаях, даже абсолютно исправная вентиляция может перестать работать или даже работать в обратную сторону (обратная тяга).
Чтобы понять, почему так происходит, надо вспомнить то, что каждый из нас слышал в школе на уроках физики. Чем ниже температура, тем больше плотность воздуха, т. е. воздух более тяжёлый. Поэтому наибольшая плотность воздуха зимой в морозную погоду, а наименьшая летом.
Поэтому, если в квартире, к примеру, температура 18ºС, а на улице -3ºС, то более тёплый(лёгкий) внутренний воздух через вентиляционный канал будет стремиться из квартиры на улицу. С повышением температуры на улице, удельный вес наружного и внутреннего воздуха начнёт выравниваться, а значит, тяга в канале начнёт ослабевать. А, если в квартире температура, к примеру, 24ºС, а на улице стоит жара под 30ºС, то, более прохладный(тяжёлый) внутренний воздух будет просто не в состоянии подняться вверх и выйти по вентканалу в атмосферу. Ему будет гораздо проще двигаться не вверх, а вниз, то есть как бы «вытекать» из квартиры.
Вот почему в жаркую погоду велика вероятность того, что вентиляция может дать обратную тягу, хотя при этом её нельзя будет признать неисправной, т. к. в этих условиях она, согласно законам Природы, и не могла работать.
Так что, измерить вентиляцию можно, только если она работает. Но прежде надо выяснить работает ли она.
Как уже говорилось, это может сделать любой человек – больших усилий для этого не потребуется. Для этого нужен небольшой кусок туалетной бумаги. Не надо брать лист газеты, журнала или картона. Почему?? Согласно существующим нормам на кухню (с эл. плитой), ванную и туалет полагается : 60, 25 и 25 м³/ч соответственно. Чтобы достичь этих значений, необходима сравнительно небольшая скорость движения воздуха через вент.решётку и такое движение можно обнаружить только тонким листом бумаги (лучше, если это будет туалетная бумага). В некоторых квартирах, бывает притягивает и кусок плотной, тяжёлой бумаги, но это говорит о том, что в данной квартире вентиляция работает настолько хорошо, что превышает необходимую норму. Здесь необходимо учитывать ещё одно необходимое условие проверки тяги. Согласно той же «Методике испытаний воздухообмена жилых зданий», при проверке вентиляции, в одной из комнат приоткрывают створку окна на 5 – 8 см. и открывают двери между этой комнатой и кухней или с/узлом.
Нам довелось присутствовать на многих комиссиях, которые собирались для оценки состояния вентиляции в различных квартирах и, иногда, приходилось наблюдать, как представитель инспектирующей организации проверял вентиляцию при закрытом окне. Это ошибка!! В нашей стране вентиляция в жилых помещениях является приточно-вытяжной с естественным побуждением, т. е. не принудительная, не механическая. И все нормы воздухообмена рассчитывались именно для естественной вентиляции. А чтобы воздух ушёл в вент.решётку, надо чтобы он откуда-то пришёл, а приходить (поступать) в квартиру, согласно нормам, он должен через щели в окнах, дверях и прочих конструкциях. В начале 90-х годов в нашей стране появились невиданные доселе пластиковые окна с герметичными стеклопакетами и металлические двери с уплотнителями. Бесспорно, эта продукция не чета нашим старым деревянным окнам с их вечными сквозняками, но здесь появилась одна проблема – новые технологии пришли, а нормы остались старыми и согласно этим нормам приток воздуха в квартиру осуществляется через щели и неплотности, а новые стеклопакеты эти неплотности полностью исключают. Вот и получается, что герметичные окна и двери создают в квартире такие условия, при которых вентиляция нормально работать не может. И тогда, чувствуя недостаток свежего воздуха в квартире, люди придумывают себе ещё одну проблему – устанавливают вентиляторы.
КАК НЕ ОСТАТЬСЯ БЕЗ ВОЗДУХА?
Обрисуем ситуацию, с которой нам часто доводилось сталкиваться. Итак, возьмём обычную двухкомнатную квартиру («хрущёвку») общей площадью 53 м². В этой квартире имеется металлическая дверь с уплотнителем и пластиковые окна. Также есть два вент.канала – один для с/узла, а другой для кухни и в кухонный вент.канал заведена «вытяжка» над плитой (можно сказать классическая ситуация). Сейчас «вытяжки» (т. е. вытяжной зонт над плитой) производят настолько мощные, что на максимальном рабочем положении их мощность по паспорту составляет 1000 м³/ч и даже больше. А теперь представьте, что в таком герметичном помещении, хозяйка решила что-нибудь приготовить и включила «вытяжку» над плитой на полную мощность. При высоте потолков 2 м. 60 см., объём воздуха в этой квартире составляет всего 138 м³. Для вытяжки, по определению, понадобится совсем немного времени, чтобы «проглотить», пропустить через себя кубометры воздуха этой квартиры. В итоге, «вытяжка» начинает выкачивать из квартиры воздух и создаёт разрежение, а т. к. окна и дверь очень плотные и воздух для циркуляции через них не поступает, то остаётся одно единственное место, через которое возможен приток воздуха в квартиру – вентиляционное отверстие с/узла (!!!). В такой ситуации даже нормально работающая вентиляция с/узла (туалет и ванная) начнёт работать в обратную сторону (обратная тяга). А, поскольку, вентиляция в пределах чердака объединена в общую систему, то в квартиру начинают поступать посторонние запахи с других этажей, порой до неприличия зловонные.
В данном случае решение проблемы с обратной тягой довольно простое – открывать окна на момент пользования вытяжкой. Раз уж вы решили связать свою жизнь с герметичными стеклопакетами и такой же герметичной дверью, то вам придётся смириться с тем, что приток воздуха в вашу квартиру будет осуществляться через открытое окно – иначе никак. Приточные устройства в состоянии компенсировать удалённый через штатные вент-каналы воздух, но обеспечить воздухом мощную вытяжку – это для них сложная задача.
НЕМНОГО О ТОНКОСТЯХ…
Не очень распространённая проблема. Однако, если о ней не знать, то можно очень долго искать причину обратной тяги и ничего не найти. Итак, в вент-канале обратная тяга, но при обследовании выясняется, что канал абсолютно чистый, на чердаке горизонтальные соединительные короба (если такие имеются) в полном порядке, а шахта, выходящая на крышу тоже в норме и придраться просто не к чему. Оказывается причина «обратки» в том, что вент-решётка установлена на «проходном» канале. То есть, в один канал присоединены две или более квартир (по вертикали).
Для нормальной работы вентиляции, вент-канал квартиры должен начинаться с «заглушки», т. е. у воздуха, попадающего через вент-решётку в канал, должен быть только один путь – наверх. Ни в коем случае не должно быть хода вниз – либо сразу у нижней части вентрешётки, либо с небольшим углублением, но обязательно канал должен быть отглушен (перекрыт) в нижней его части. Иначе, велика вероятность того, что такой канал даст обратную тягу.
В основной массе такая проблема стоит перед людьми, живущими в домах серии II-18 и И-209А. Это 14-ти, 12-ти этажные одноподъездные «башни». Впрочем похожая система вентиляции используется и в 9-ти этажных панельных домах и в некоторых кирпичных, если вентиляция выложена не кирпичём, а смонтирована целыми бетонными панелями с отлитыми внутри каналами.
Данная система выглядит следующим образом. Имеется сборный канал (общая шахта) диаметром около 220-240 мм, и по бокам сборного канала расположены каналы-спутники диаметром около 130-150 мм. Обычно квартиры присоединены к такой системе вентиляции «в разбежку» – например, 1-й этаж в левый от шахты канал-спутник, 2-й этаж – в правый, 3-й этаж – в левый и т. д. Вент-блоки отлиты на заводе ЖБИ таким образом, что каналы спутники (они же – разгонные участки) сообщаются с общей шахтой окошками через каждые 2,5 метра. То есть воздух должен попасть из квартиры в вент-решётку, подняться по каналу-спутнику вверх на 2,5 метра, упереться в «заглушку» и выйти через окошко в общую шахту (сборный канал). Но в том то и вся беда, что в этих домах НЕТ «заглушек».
Скорее всего, проектировщик предусмотрел так называемый «универсальный» вентиляционный блок. Дело в том, что если отливать на заводе вент-блоки с разделением на «правый» и «левый» или «для чётных этажей» и «для нечётных», то при их монтаже путаница неизбежна и проблемы гарантированы. Поэтому вент-блок был сделан универсальным, для того, чтобы при монтаже рабочий ставил его не задумываясь над его геометрией. А уже после монтажа выбирал, какой канал-спутник будет задействован для «чётных» этажей дома, а какой для «нечётных» и, исходя из этого, монтажник должен был на месте устанавливать в каналы-спутники заглушки.
Вера проектировщика в добросовестность наших строителей при соблюдении технологического процесса, поистине наивна. Я сам много лет работал на стройке и знаю, как строятся наши квартиры.
В итоге получается следующее. Вместо системы вентиляции с общей (транзитной) шахтой и двумя каналами-спутниками мы имеем в своих домах три транзитных канала. На нижних этажах эта проблема ещё не так заметна, а вот на верхних, если вентиляционная решётка установлена на таком транзитном канале, то не стоит удивляться посторонним запахам в квартире. Поток воздуха, поднимаясь по каналу и пролетая мимо вент.решётки, либо будет давать обратную тягу, либо будет сильно препятствовать удалению воздуха из квартиры. А, если установить заглушку, то она будет отсекать нижний поток воздуха и направлять его в сборный канал через предусмотренное окошко. Тем самым вентиляция в квартире начинается как бы с нуля – не испытывая никаких препятствий и не обременённая борьбой с другими воздушными потоками, т. е. так как и должно быть.
“ЗНАМЕНИТАЯ” ПРОБЛЕМА ПОСЛЕДНИХ ЭТАЖЕЙ
Иногда, когда к нам обращались за помощью люди и при описании своей проблемы, говорили, что у них последний этаж в доме, то этого бывало достаточно чтобы, не сходя с места установить причину отсутствия нормальной вентиляции. Потом оставалось только выйти на место и подтвердить свои предположения. Поверьте, от этой проблемы страдает огромное количество людей, тысячи. Дело в том, что для нормальной работы вентиляции в квартире, воздуху желательно пройти по вент-каналу хотя бы около 2-х метров по вертикали. На любом другом этаже такое возможно, но на последнем такая возможность исключена – препятствием выступает чердачное помещение. Существует три способа вывода вентиляции из квартиры на улицу. Первый – вент-каналы выходят на крышу напрямую в виде оголовка трубы. Так строили почти все дома до начала ХХ века, а потом стали постепенно отходить от этого способа. Причина – возросла этажность домов. Этот способ нас не интересует, потому что с ним проблем почти никогда не возникало. Второй способ – вентиляция, достигая чердака, накрывалась горизонтальными герметичными коробами, которые соединялись с шахтой, выходившей наружу поверх крыши. Третий способ (современный) – вентиляция попадает сначала на чердак, который служит своеобразной промежуточной вент-камерой, а уже после этого выходит наружу через одну общую вент-шахту.
Нас интересуют второй и третий варианты. Во втором случае происходит следующее – воздух по каналам со всех этажей поднимается вверх до уровня чердака и врывается в горизонтальный соединительный короб, смонтированный на чердаке. При этом происходит удар воздушного потока о крышку горизонтального вент-короба. Воздушный поток немного отклоняется в сторону вент-шахты, но если внутреннее сечение горизонтального чердачного короба недостаточное, то в коробе возникает область повышенного давления и воздух стремится найти себе выход в любое ближайшее отверстие. Таких выходов (отверстий) обычно два – вент-шахта, предназначенная для этого и канал верхнего этажа, т. к. он самый ближний и находится почти в коробе на расстоянии всего-то 40-60 см. и его проще простого «продавить» в обратную сторону. Если же сечение короба на чердаке достаточное, но крышка смонтирована слишком низко, то происходит то же самое – обратная тяга – воздушный поток из-за маленькой высоты крышки не успевает отклониться в сторону вент-шахты и происходит удар. Отражённый поток воздуха «продавливает» вентиляцию верхнего этажа и все запахи с нижних этажей заходят в эту квартиру. Бороться с этим можно двумя способами – глобальным и локальным. Глобальный – увеличить сечение чердачного горизонтального соединительного короба путём изменения его высоты в 2 – 3 раза, плюс устройство внутри короба «хитрых» приспособлений, которые мы называем «рассечками». Но, во-первых, это должны делать специалисты, а во-вторых, не рекомендуется увеличивать сечение короба, если к вент-шахте с противоположной стороны присоединены такие же короба. Локальный способ состоит в том, что каналы верхнего этажа отделяются от общего воздушного потока и отдельно заводятся в шахту поверх короба. Эти индивидуальные каналы утепляются, чтобы не нарушать температурно-влажностный режим (ТВР) чердака. И всё – вентиляция в квартире работает.
Теперь, что касается третьего (современного) варианта удаления воздуха. По этому принципу работает вентиляция во всех многоэтажках (серии : П – 44, П3М, КОПЭ и т. п.). Последние этажи в таких домах страдают чаще не от обратной тяги, а от ослабленной. Вместо того, чтобы пройти положенные по нормам 2 метра по вертикали и после этого соединиться с общим потоком, на последних этажах происходит следующее – воздух, попадая в канал, проходит всего около 30 сантиметров по вертикали и, не успев набрать силу и скорость, рассеивается. Вентиляция таким образом не пропадает, но воздухообмен в верхней квартире сильно снижается. Если же входные и межсекционные двери чердака будут открыты (часто так и бывает), то возникает сильнейший сквозняк, способный «опрокинуть» тягу в квартирах верхнего этажа. Чтобы этого не происходило, индивидуальные каналы верхнего этажа необходимо нарастить. Диаметр этих каналов 140 мм. Нужно надеть на эти отверстия трубы такого же диаметра, а места стыков тщательно обмазать алебастром. Трубы вывести примерно на высоту 1 метра и наклонить их слегка в сторону общей шахты, чтобы поток воздуха, поднимающийся снизу, пролетая рядом с выведенными трубами, силой своего потока подхватывал и вытягивал воздух из каналов верхнего этажа.
САМОЕ РАСПРОСТРАНЁННОЕ ЗАБЛУЖДЕНИЕ
У каждого из нас в квартире есть кухня. У каждого на кухне стоит плита (газовая или электрическая). И у подавляющего большинства над плитой имеется вытяжной «зонт» (в простонародье – «вытяжка»). В чём состоит заблуждение?? В том, что очень многие люди считают «вытяжку» эквивалентом вентиляции кухни. Иначе, как объяснить то, что, устанавливая вытяжку над плитой, воздуховод от неё заводят в вентиляционное отверстие кухни, закрывая его полностью??
Делают это по нескольким причинам – либо посоветовали строители, которые делали ремонт, либо от полной уверенности, что даже так воздух из кухни прекрасно удаляется. Плюс ко всему, продавцы вытяжек утверждают, что мощность покупаемой вытяжки должна подбираться с учётом площади кухни. На самом деле всё это – заблуждение.
Попробуем разобраться, откуда это пошло. Если внимательно почитать различные нормативные документы для строительства и эксплуатации, то прослеживается странная закономерность: НИ В ОДНОМ документе Вы не встретите слово… ВЫТЯЖКА!
Замечание: 1) речь идет именно о нормативных документах, а не справочных; 2) вытяжка – кухонный вытяжной зонт(существительное), а не вытяжка – как действие(глагол).
Итак, если в нормативной базе отсутствует такое понятие, как вытяжка, то, как может нормироваться воздухообмен с ее помощью??? Нонсенс.
Тогда у конечных пользователей вытяжками возникает резонный вопрос: как же так, вытяжки существуют, а слова нет? А все очень просто, есть и слово и вытяжки, только они, как бы «вне закона». И связано это с тем, что ВСЕ жилые здания (99,99%) в России (и бывшем СССР) имеют естественную вентиляцию, или, правильнее, вентиляцию с естественным побуждением.
Т.е. воздух в наши квартиры приходит через неплотности в окнах, дверях и строительных конструкциях, а также через специальные приточные клапаны или каналы, а уходит через вент.каналы, расположенные в кухне, ванной, туалете.
Как это связано? Попробуем объяснить. Любые строительные конструкции или коммуникации, рассчитываются на определенные нагрузки. Вентиляция в этом списке не исключение. Наши каналы имеют достаточно ограниченные возможности по пропускной способности. В наилучших условиях их производительность составляет 150 – 180 м3/ч (для сравнения: современные вытяжки имеют мощность 600-1100м3ч)
Извините, если мы заняли у Вас много времени. Вот мы и подошли к заблуждениям. Дело в том, что существуют еще нормы для механической вентиляции, которые значительно отличаются от норм для естественной вентиляции. Например, воздухообмен для кухни с естественной вентиляцией должен быть 3-х кратным, а с механической вентиляцией – 10-12 кратным. Так вот, продавцы вытяжек применяют норму (10-12 крат), не задумываясь, что вытяжка над плитой и нормы механической вентиляции никак между собой не связаны и вытяжка над плитой не имеет НИКАКОГО ОТНОШЕНИЯ К ВЕНТИЛЯЦИИ помещений.
Вытяжной зонт не предназначен для вентиляции кухни. Он лишь для удаления загрязнённого воздуха, находящегося в небольшом пространстве над плитой. Вытяжка не в состоянии справиться с воздухом, который поднялся к потолку лучше, чем обычный вентканал в верхней части помещения. Для вытяжки «дотянуться» до этого воздуха – практически непосильная задача. Дело в том, что поведение потока воздуха при всасывании и при выбросе разное. При всасывании воздух забирается с расстояния не более одного диаметра всасывающего отверстия, а выбрасывается воздушная струя на расстояние пятнадцати диаметров отверстия. Именно поэтому мы пылесосим ковёр не с высоты метра, а прижимая щётку. Именно поэтому мы в жару направляем на себя вентилятор лицевой стороной, а не обратной. Именно поэтому вытяжка не может «взять» загрязнённый воздух (запахи), который поднялся к потолку.
Вытяжка во время работы удаляет воздух над плитой и поблизости. Тем самым создаётся движение воздуха в помещении, и вовлекаются в процесс смешивания дополнительные потоки воздуха. Сколько выкачивается из помещения, столько же поступает на замену. Если вытяжка прокачала 1000 кубометров воздуха – это вовсе не означает, что в помещении несколько раз полностью обновился воздух. Возникшая пустота, которую не любит Природа, будет заполняться воздухом, который пришёл откуда угодно – из форточки, из других комнат, из щелей. Но запахи от приготовления пищи, которые поднялись к потолку, почти не участвуют в смешивании и удаляются с трудом. Неспроста в инструкциях к вытяжкам написано, что… «…с целью максимальной эффективности работы вытяжной зонт должен располагаться на 60 см. от электроплиты и на 75 см. от газовой плиты…». «…Во время работы вытяжки избегайте воздушных потоков – это может быть причиной распространения запахов по всему помещению». Если бы вытяжка была предназначена для вентиляции кухни, то в инструкциях не было бы подобных рекомендаций, а сам вытяжной «зонт» советовали бы устанавливать вверху, вместо люстры.
К слову, в инструкциях к вытяжкам нет упоминаний, на какой объём помещения она рассчитана. Это уже придумали сами продавцы данного товара. Площадь помещения на производительность НЕ ВЛИЯЕТ. И наоборот, мощность покупаемой вытяжки не вытекает из размеров помещения.
Главный фактор, влияющий на производительность вытяжки – это сечение вентканалов в наших домах. Подавляющее большинство каналов на территории нашей страны имеют сечение 130 х 130 мм, или диаметр 140 мм. Присоединяя к такому небольшому каналу механическую (принудительную) вентиляцию, мы получаем мизерный эффект. Больше воздуха, чем может такой канал всё равно не пропустит, сколько не старайся. Почти в любой инструкции к вентилятору или вытяжке нарисована диаграмма, на которой изображена кривая зависимости производительности от давления, из которой ясно, что чем выше давление, тем ниже производительность вытяжки или вентилятора. Основные факторы, из-за которых происходит повышение давления в канале и, как следствие, падение производительности – это: неровности внутри канала; смещение поэтажных блоков; выступающий раствор; зауженное сечение; материал и форма соединительных воздуховодов; каждый поворот на пути воздушного потока.
В итоге, благодаря влиянию этих факторов, в канале и на подходе к нему будет создаваться повышенное давление, а, как известно, чем выше давление, тем меньше производительность вытяжки. Это означает, что МОЩНАЯ вытяжка сама себя «душит». И чем мощней вытяжка – тем сильней она себя «запирает».
Можно присоединить вытяжку производительностью 1000 м3/ч, можно 1500 м3/ч, можно 5000 м3/ч (если такая есть), но во всех случаях результат будет одинаков – в канал удастся протолкнуть чуть больший объём воздуха и всё!!! Остальное – потери!!!
Как-то на одно из подключений вытяжки к вентканалу диаметром 140 мм., в серии П-44, мы специально прихватили с собой чашечный анемометр для замеров. Когда почти всё было смонтировано, спросили у клиента разрешение немного поэкспериментировать. Разъединили воздуховод и поставили заранее заготовленную вставку с анемометром. Вытяжка четырёхскоростная “САТА”. Вентилятор центробежный. Протяжённость воздуховода 3,5 метра с двумя поворотами. Воздуховод пластмассовый, диаметром 125 мм. Максимальная производительность вытяжного купола 1020 м3/ч. Анемометр был установлен перед последним поворотом (у самого входа в вентблок). Первая скорость – анемометр показал 250 кубов/час. Вторая скорость – показания 340 кубов/час. Третья скорость – показания 400 кубов/час. Четвёртая скорость – 400 кубов/час. Итог: 1) разница в производительности между первой и четвёртой скоростями – минимальна; 2) канал пропустил ВСЁ ЧТО МОГ, а значит, потери просто огромны; 3) шум на третьей и четвёртой скорости вырос, а толку ноль. И это при том, что стенки соединительных воздуховодов и вентиляционного канала очень гладкие!!! Представьте, каковы будут потери производительности, если присоединить вытяжку к вентканалу, который выполнен, скажем, в кирпичной кладке!!!
Конечно, можно использовать вытяжку как простой вентилятор, но в этом случае не стоит надеяться на то, что она обеспечит вам полноценный воздухообмен. Мы не отговариваем от приобретения вытяжки вообще и не утверждаем, что это не нужная и бесполезная вещь. Конечно это не так. Единственная цель, которую мы преследуем – это желание предостеречь потребителя от всеобщего заблуждения. А именно: 1) не стоит воспринимать вытяжной зонт на кухне как эквивалент вентиляции помещения – он не имеет к этому никакого отношения; 2) покупая вытяжку, нельзя отталкиваться от размеров помещения – это вещи не связанные.
ПОЧЕМУ «ВДРУГ» ПЕРЕСТАЛА РАБОТАТЬ ВЕНТИЛЯЦИЯ?
Так бывает. Вроде работала-работала много лет и «вдруг» перестала. Многие жильцы склонны полагать, что причиной этому являются соседи, которые влезли в вентиляционный стояк и что-то там перекрыли. Конечно, есть и такие «умельцы». Эти «спецы» прекрасно понимают, что по электрической сети течёт ток, по канализации – какашки, по трубам – вода, но когда дело доходит до вентиляции – логика им отказывает – они не могут понять, что там вовсе не пустота, которую надо занять, там – движется воздух.
Но речь не о них. Если сразу отсечь все случаи, когда соседи действительно нарушили вентиляцию и попытаться разобраться в остальных причинах, повлиявших на её работоспособность, то окажется, что огромное количество проблем с вентиляцией жильцы создают себе сами.
Как это происходит? Для примера возьмём самую распространённую современную схему естественной вентиляции: а) многоэтажный дом, б) вентиляция дома выходит на тёплый чердак и состоит из сборного канала (общая шахта) и канала-спутника. Под эту схему подходят дома серий: П-44, П-3М, КОПЭ, П-46, П-55, П-30, П-42, П-43, некоторые монолитные дома и многие менее распространённые серии.
Вентиляция в этих домах состоит из сборного канала (общая шахта), который идёт транзитом с первого этажа и до чердака. Помимо этого для каждой квартиры имеется индивидуальный канал (канал-спутник), который начинается с вентиляционной решётки в квартире, затем поднимается на один этаж и, не доходя до такого же индивидуального канала вышерасположенной квартиры, выходит через отверстие в общую шахту, где воздух и продолжает своё движение до чердака и дальше на улицу.
Чтобы проще было понимать данную схему, представьте себе полноводную реку с впадающими в неё небольшими речушками. Это и есть рассматриваемая схема вентиляции. Река – это сборная шахта; ручейки, впадающие в неё – это каналы-спутники.
Как притоки питают полноводную реку, так и каналы-спутники наполняют воздухом сборную шахту. Если начать перекрывать притоки, то река обмелеет и пересохнет. Если из каналов-спутников не будет выходить воздух, то скорость и объём воздуха в сборной шахте существенно уменьшится. Поскольку система вентиляции дома – это цепочка взаимосвязанных и взаимозависимых звеньев, то нарушение одного из звеньев приводит к изменениям во всей цепи, что в итоге оборачивается проблемами для всей системы вентиляции стояка, подъезда, а иногда и дома.
Можно проследить все этапы нарушения системы вентиляции.
Обычный 17-ти этажный панельный дом, каких полно сплошь и рядом. Схема вентиляции, применённая в этих домах – пожалуй, лучшая из того, что придумал человек для жилых высотных домов. Эта система вентиляции способна работать даже в сильнейшую жару. Хотя, по определению, она не должна работать летом. В жару вентиляция по всем условиям и правилам должна остановиться или опрокинуться (обратная тяга). Но этого не происходит в данных домах, потому что вентиляционный канал, в роли которого выступает сборная шахта, имеет высоту около 50 метров. И за счёт такого перепада по высоте, а значит и перепада по разности давления между нижней и верхней точками, возникает довольно сильный поток воздуха (тяга). Усиливающим фактором здесь выступает “тёплый чердак”. И данную связку не способна «перебить» даже сильная жара. НО… только в том случае, если для данной системы вентиляции созданы условия, необходимые ей для работы.
Один подъезд любого многоподъездного дома с тёплым чердаком – это замкнутая и обособленная система. Вентиляция любой квартиры этого подъезда – это составная часть данной системы. То есть, вентиляция каждой квартиры зависит от остальных квартир подъезда и, наоборот – каждая квартира оказывает влияние на все остальные квартиры.
Влияние одной квартиры на свой стояк или весь подъезд – незначительное и не способно изменить «расстановку сил». Но это если одна квартира. А если их несколько?? Если их пять, или десять, или двадцать, или половина. А если больше половины? То есть, если имеются квартиры, которые не участвуют в системе (выпадают из неё), значит, данная система теряет силу, слабеет. Существует определённая критическая точка, после которой она даёт сбой. То есть сумма всех воздушных потоков, выходящих на чердак, оказывается недостаточной, чтобы вытолкнуть этот воздух с чердака в атмосферу. Потому что общая вытяжная шахта, идущая с чердака на крышу(на улицу), имеет довольно внушительные размеры. И эта прорва «хочет кушать», т. е. её размеры рассчитаны на прохождение определённого объёма воздуха, который она недополучает. Есть такая поговорка: «Шилом моря не согреешь». Это как раз наш случай. В результате, скорость и плотность воздушного потока в такой шахте снижается и тяга опрокидывается. Зимой более «тяжёлый» холодный воздух опускается, а выходящий тёплый воздушный поток («шило») слишком мал для больших размеров шахты («море»).
Возникает резонный вопрос: «Почему уменьшается объём воздуха, выбрасываемого через вент.шахту в атмосферу? В чём причина?».
Ответ можно получить на примере самого маленького звена общей системы вентиляции – на примере вентиляции отдельно взятой квартиры.
В квартире имеется два вентиляционных канала. Один работает на кухню, другой – на с/узел (ванная туалет). Два канала 24 часа в сутки удаляют воздух из квартиры в вентиляцию. На смену удалённому грязному, влажному, отработанному воздуху должен прийти другой воздух – наружный, свежий, обогащённый кислородом. Т. е. ПРИТОК. Благодаря этой циркуляции, этому постоянному замещению (притоку), в квартире поддерживаются нормальные условия для проживания.
Нормальным, полноценным притоком можно считать только приток наружного воздуха. Воздух, пришедший с лестничной площадки через щели во входной двери или, пришедший из соседней комнаты (квартиры), по качеству ничем не лучше того воздуха, который уже имеется в квартире. Он такой же грязный, влажный, в него уже покурили, пшикнули туалетным освежителем и насытили «ароматами» кухни. Это как в старом анекдоте про концлагерь: «Сегодня будет смена белья. Первый барак меняется со вторым».
Раньше приток в квартиру, в основном, осуществлялся через щели и неплотности в наших старых, страшных, кривых, дырявых окнах. При замене этих позорных окон на новые герметичные стеклопакеты, нарушается прежний порядок циркуляции воздуха. Новые окна очень плотные, щелей в них практически нет, а значит приток наружного воздуха через них почти нулевой. Временное приоткрытие форточек и створок – это самообман. Вентиляция работает постоянно, а значит потребность в притоке тоже постоянная.
Кто-нибудь пытался выкачать воздух из пластиковой бутылки?? Правильно. Это не возможно. А если в бутылке сделать отверстие?? Тогда можно выкачивать воздух из бутылки до бесконечности. Отверстие – это приток. Бутылка – это квартира с герметичными стеклопакетами. Когда окна закрыты – вентиляция нормально работать не может. В этих условиях с ней может происходить всего две вещи:
а) один из вент-каналов квартиры (более сильный канал) начнёт перетягивать другой канал. То есть второй, более слабый канал, начнёт выполнять функцию притока, который был загублен установкой новых окон;
б) оба вент-канала будут работать как прежде, а недостающий приток будут возмещать через щели между другими квартирами. То есть будут засасывать в квартиру точно такой же отработанный воздух, какой и удаляется, только уже с чужими запахами.
Вот и получается, что: в одном случае, вместо двух нормально работающих каналов квартиры, мы имеем только один работающий канал. А значит, объём удаляемого воздуха из одной квартиры уменьшился, как минимум, наполовину(!!!). Во втором случае, каналы вроде бы наполняют сборную шахту воздухом, но это воздух, находящийся внутри дома, а не наружный. А значит, каналы не работают на квартиру, в которой они расположены и циркуляция воздуха в этой квартире нарушена.
Теперь выйдите на улицу, посмотрите на любой дом, выберите любой стояк квартир и посчитайте, сколько по всей вертикали осталось старых окон, а сколько стоит пластиковых. Те, что с пластиком – можно вычёркивать из общей системы вентиляции подъезда. Это – балласт. Без притока эти квартиры гирями висят на ногах системы вентиляции. И если летом или зимой (зимой реже) из ваших вент-каналов «вдруг» пойдёт обратная тяга, то можете смело сказать этим соседям «большое спасибо». Они очень старались.
Основной вывод.
Нельзя бездумно устанавливать герметичные стеклопакеты. Эти окна не сами по себе. Они – часть системы вентиляции. От Вас зависит, будет вентиляция работать или нет. Решили поставить герметичные стеклопакеты?? Организуйте ПОСТОЯННЫЙ ПРИТОК!!!.
Источник: «Московская вентиляция»
авторы статьи: Вершинин А. А. и Вершинин С. А.