Сжигание газа в топках котлов

Сжигание газа в топках котлов Анемометр

Сжигание газа в топках котлов

Основными горючими составляющими большинства газообразных топлив являются оксид углерода СО, водород Н2, метан СН4 и значительно реже – высокомолекулярные углеводороды СmHn

Полнота, интенсивность и устойчивость горения газов в первую очередь зависят от физических факторов – температуры и условий смешения горючего с окислителем. Если теплопотери зоны горения, связанные с теплообменом с окружающей средой, превышают тепловыделение, то горение невозможно. Для отдельных горючих газов и газообразных топлив имеется температура воспламенения, существенно зависящая от условий протекания процесса. Температура воспламенения природного и доменного газов около 5300С, водорода 410-630°С, оксида углерода 610-660°С, метана 630-7900С.

Условия сжигания газов котла требуют:

– температура в топке котла должна быть выше температуры воспламенения горючей смеси, в противном случае горение будет неустойчивым;

– предварительный нагрев горючей смеси ускоряет зажигание и интенсифицирует процесс горения.

Условия рационального сжигания газообразного топлива:

– хорошее перемешивание газа с окислителем;

– повышение температурного уровня процесса, что достигается подогревом компонентов горения, а также снижением коэффициента избытка воздуха, приводящим к увеличению скорости распространения пламени;

– создание хороших очагов воспламенения;

– увеличение поверхности фронта горения, что достигается турбулизацией факела.

Рисунок 6.1 — Общая классификация топочных устройств
Вг — подача топлива: VвI — воздух, подаваемый совместно с топливом;

VвII — воздух, подаваемый раздельно

Рисунок 6.2 — Схема подачи в топку газа и окислителя

1 — жидкость; 2 — пары топлива; 3 — зона горения; 4 — область диффузии окислителя и продуктов сгорания

Рисунок 6.3 — Схема горения капли жидкого топлива

Сжигание газа в топках котлов

а — в плотном фильтрующем слое; в — факельный прямо-сточный процесс;

б — в кипящем слое; г — вихревой (циклонный) процесс.

Рисунок 6.4 — Схемы организации сжигания твердого топлива

Сжигание газа в топках котлов

а — без предварительного смешения газа и окислителя; б — с полным предва­рительным смешением с образованием однородной смеси; в — с неполным предварительным смешением без образования однородной смеси; г — с частичным предварительным смешением с недостатком окислителя; К — фронт кинетического горения; Д — фронт диффузионного горения.

Рисунок 6.5 — Принципы организации сжигания газового топлива

Сжигание газа в топках котлов

Рисунок 6.6 — Кривые устойчивости пламени

§

В топочную камеру газ и окислитель подаются через горелки. Назначением горелки, кроме ввода в топку необходимых для достижения заданной производительности агрегата количеств газа и окислителя, является организация смесеобразование и создания у ее устья устойчивого фронта воспламенения для зажигания выходящей из горелки газовой смеси.

Для сжигания газов применяется большое число различных типов горелок, отличающихся как по принципу работы, так и по конструктивному оформлению.

По способу организации перемешивания компонентов горения можно разделить:

– без предварительного смешения;

– с полным предварительным смешением;

– с неполным предварительным смешением.

По способу подачи воздуха:

– с принудительной подачей воздуха ( прямоточные, вихревые );

– подача воздуха путем эжектирования его газовой струей.

По способу регулирования крутки потока применяют:

– горелки с изменением сечения входного патрубка;

– горелки с изменением живого сечения лопаточных завихрителей, с изменением угла наклона лопаток, с перепуском части воздушного потока мимо завихрителей.

По давлению газа:

– горелки низкого давления (перепад давления в горелке до 500 Па);

– среднего давления (до критического перепада давлений);

– высокого давления (сверхкритического перепада давлений).

По скорости истечения:

– горелки с низкой скоростью истечения (около 5 м/с);

– средней скоростью истечения (около 20 м/с);

– высокой скоростью истечения (около 100 м/с).

Для котлов малой производительности, а также для отопительных установок, находят применение однопроводные инжекционные горелки (атмосферные горелки) частичного и полного смешения. Инжекционные горелки, работающие на газе среднего давления, обеспечивают полное перемешивание газа и воздуха в смесителе и сжигание газа при небольших избытках воздуха. Недостатками таких горелок являются значительные их размеры и шум при работе.

Конструктивные особенности горелок зависит от характеристики сжигаемого газа (теплота сгорания, запыленность и др.) и располагаемых давлений газа и воздуха. Важным показателем, влияющим на предварительное смесеобразование и оформление горелки, является соотношение количества сжигаемого газа и необходимого для этого окислителя. Так, на 1 м3 доменного газа с низкой теплотой сгорания Сжигание газа в топках котлов при aТ=1,05 требуется около 0,8 м3 холодного или 1,6 м3 горячего воздуха (tв»2700С), а на 1 м3 природного газа Сжигание газа в топках котлов — 9,81 м3 холодного или около 20 м3 горячего воздуха.

7.1 Сжигание газообразного топлива с низкой теплотой сгорания

При сжигании доменного газа, как это было указано, газ и воздух поступают в горелку в соизмеримых количествах, этим облегчается организация смесеобразования. На практике при сжигании доменного газа нашли применение в основном факельные горелки.

На рис.7.1 показана диффузионная факельная горелка с послойной подачей доменного газа и воздуха.

Доменный газ является буферным топливом. Это означает, что в зависимости от режима работы технологических установок газ направляется для сжигания только тогда, когда он имеется в избытке.

7.2 Сжигание газообразного топлива с высокой теплотой сгорания

Характерной особенностью сжигания газов с высокой теплотой сгорания, является необходимость смешения больших объемов окисления с малым количеством газа.

Сжигание хорошо предварительно перемешанной смеси газа с высокой теплотой сгорания и воздуха затруднений не представляет. Этапом, определяющим интенсивность горения, является период смешения газа и воздуха. Интенсификация процесса смешения обеспечивается подачей газа тонкими струйками с большой скоростью (около 100 м/с) в массу воздуха, подаваемого со скоростью 15-40 м/с.

На рис.7.3а, газ поступает в центральную трубу и выходит в камеру смешения через ряд мелких отверстий. В другой горелке (рис.7.3б) газ из двух газоподводящих трубок выходит со скоростью 50 м/с через большое количество мелких отверстий, пересекая воздушный поток.

От условий смесеобразования газа и воздуха при сжигании газообразного топлива можно получить продукты сгорания с различной степенью светимости. Улучшение процесса смешения приводит к интенсификации горения топлива, повышению эффективной температуры факела, при этом факел имеет малую светимость. Ухудшение смесеобразования замедляет горение и приводит к сажеобразованию, в связи с чем повышается светимость факела, снижается его температура. Применяют газовые горелки специальной конструкции, позволяющие изменять светимость факела. Изменение температурных характеристик по высоте топки может быть достигнуто применением реверсивных горелок, позволяющих изменять направления вращения газового потока.

Сжигание газа в топках котлов

а — при сжигании газа или газа совместно с жидким топливом;

б —при сжига­нии газа и угольной пыли.

Рисунок 7.1 — Схемы топочных камер для сжигания газа

Сжигание газа в топках котлов

Рисунок 7.2 — Факельная угловая горелка для доменного газа (слева показан

вид со стороны выхода газа и воздуха из горелки).

Сжигание газа в топках котлов

а — вихревая;

б — щелевая.

Рисунок 7.3 — Горелки для природного газа

9 СЖИГАНИЕ ТВЕРДОГО ТОПЛИВА. СЛОЕВОЕ СЖИГАНИЕ.

КОНСТРУКЦИИ ТОПОК С НЕПОДВИЖНЫМИ РЕШЕТКАМИ

9.1 Классификация слоевых топок

Слоевые топки предназначены для сжигания твердого кускового топлива. Широкое распространение для котлов малой и средней мощности нашли топки с плотным слоем.

Преимущества:

– пригодны для различных сортов топлив, просты в эксплуатации;

– могут работать со значительными колебаниями тепловой нагрузки;

– относительно небольшой расход энергии на собственные нужды;

– не требуют дорогостоящих пылеприготовительных устройств;

– не требуют больших объемов топки.

Недостатки:

– ограниченная производительность котла вследствие значительного времени сгорания крупных частиц топлива.

Обслуживание топки, в которой топливо сжигается в слое, включает следующие операции:

– подачу топлива в топку;

– перемещение кусочков топлива относительно друг друга и колосниковой решетки (шурование слоя);

– удаление из топки шлака.

В зависимости от степени механизации указанных операций топочные устройства можно разделить на:

– немеханизированные (все три операции выполняются вручную);

– полумеханические (механизированы одна или две операции);

– механические (механизированы все три операции).

По режиму подачи топлива в плотный слой различают топочные устройства с периодической и непрерывной загрузкой топлива. Характер подачи топлива в топку оказывает решающее влияние на показатели работы топочного устройства.

По организации тепловой подготовки и воспламенения топлива в слое различают топки с нижним, верхним и смешанным воспламенением.

По способу смесеобразования топлива и воздуха в слое различают следующие схемы, отличающиеся друг от друга сочетанием направлений газовоздушного и топливно – шлакового потоков:

– встречные;

– параллельные;

– поперечные;

– смешанные.

Эффективность и производительность слоевых топочных устройств зависят от рациональной организации тепловой подготовки топлива, его зажигания и горения.

9.2 Характеристика процессов горения твердого топлива в плотном слое

В верхней части слоя после загрузки находится свежее топливо. Под ним располагается горящий кокс, а непосредственно под решеткой – шлак. Указанные зоны слоя частично перекрывают друг друга. По мере выгорания топливо постепенно проходит все зоны. В первый период после поступления свежего топлива на горящий кокс происходит его тепловая подготовка, на что затрачивается часть выделяющейся в слое теплоты.

Образующийся при горении топлива шлак капельками стекает с раскаленных кусочков кокса навстречу воздуху. Постепенно шлак охлаждается и уже в твердом состоянии достигает колосниковой решетки, откуда он удаляется. Шлак, лежащий на решетке, защищает ее от перегрева, подогревает и равномерно распределяет воздух по слою.

Воздух, проходящий через решетку и поступающий в слой топлива, называется первичным. Если первичного воздуха для полного горения топлива не хватает и над слоем имеются продукты неполного горения, то дополнительно подают воздух в надслойное пространство. Такой воздух называют вторичным.

Первичные химические реакции между топливом и окислителем происходит в зоне раскаленного кокса.

В начале слоя, в кислородной зоне (к), в которой происходит интенсивное расходование кислорода, одновременно образуется оксид и диоксид углерода СО2 и СО. К концу кислородной зоны концентрация О2 снижается до 1 – 2%, а концентрация СО2 достигает своего максимума. Температура слоя в кислородной зоне резко возрастает, имея максимум там, где устанавливается наибольшая концентрация СО2.

В восстановительной зоне (В) кислород практически отсутствует. Диоксид углерода взаимодействует с раскаленным углеродом с образованием оксида углерода :

СО2 С = 2СО.

По высоте восстановительной зоны содержание СО2 в газе уменьшается, а СО – соответственно увеличивается.

Соотношение СО / СО2 зависит от температуры, которая в свою очередь зависит от концентрации окислителя, а также от степени подогрева воздуха.

Толщины кислородной и восстановительной зон зависят в основном от типа и размера кусков горящего топлива и температурного режима. С увеличением реакционной способности топлива, а также при уменьшении его зольности толщина зон сокращается.

Толщина кислородной зоны зависит от крупности топлива, то есть чем больше размер кусков, тем более толстым должен быть слой. Необходимая толщина слоя топлива зависит также и от его влажности. Чем больше влажность топлива, тем больше должен быть запас горящей массы в слое, чтобы обеспечить устойчивое восполнение и горение свежей порции топлива.

9.3 Немеханизированные и полумеханические топки для сжигания

твердого топлива в плотном слое

Простейшим немеханизированным топочным устройством, является топка с ручной периодической подачей топлива на колосниковую решетку. Колосниковая решетка поддерживает сжигаемое топливо и одновременно служит для распределения воздуха, поступающего через нее в слой. Решетка набирается из отдельных чугунных балочных или плиточных колосников.

Отношение площади всех зазоров R в колосниковой решетке, через которые поступает в слой воздух, ко всей площади решетки называют живым сечением решетки. Необходимый размер живого сечения решетки зависит от рода сжигаемого топлива и крупности кусков:

торф Fcd = 25 – 40 % ;

антрацит и бурый уголь Fcd =12 – 18 %.

Характерными особенностями тепловой работы топки с ручным обслуживанием является периодическая подача топлива и в связи с этим цикличность процесса горения. Периодическая загрузка топлива на решетку определяет ряд недостатков такой топки:

– чередование по времени фаз горения топлива;

– эксплуатация топки, связанная с тяжелым ручным трудом.

Учитывая серьезные недостатки ручных топок, их повсеместно заменяют полумеханизированными или полностью механизированными топочными устройствами.

Частичная механизация ручной топки может быть достигнута установкой поворотных или качающихся колосников.

Облегчения труда, а также улучшения условий работы слоя достигают механизацией загрузки топлива на решетку с применением различных забрасывателей. Используемые на практике забрасыватели топлива подразделяют на механические, пневматические (паровые) и пневмомеханические.

Механический забрасыватель (рис.11.а) подачу топлива на решетку осуществляет непрерывно вращающимся (550 – 800 об/мин) лопастным метателем, к которому топливо поступает из дозирующего устройства.

В пневматическом забрасывателе (рис.12,б) топливо с разгонной плиты сдувается на решетку воздухом ( паром ), выходящим из сопл круглой или щелевидной формы.

Механические забрасыватели подают более крупные куски топлива на заднюю половину решетки, а более мелкие- на переднюю. Пневматические забрасыватели, наоборот, загружают более крупное топливо ближе к фронту топки, а более мелкое – в заднюю ее часть.

В пневматическом забрасывателе (рис.12,в) сочетают механическое и пневматическое воздействие на кусочки топлива. Воздух здесь способствует более равномерному распределению мелочи по длине решетки.

Механизация подачи топлива и очистки слоя от шлака позволяет значительно уменьшить затрату физического труда и повысить экономичность топочного устройства. Топка относится к факельнослоевым устройствам с неподвижной горизонтальной колосниковой решеткой, непрерывным забросом топлива на неподвижный горящий слой и периодическим удалением шлака.

Интенсивность выгорания топлива в слое зависит от скорости подвода окислителя. Для обычных слоевых топок пределом дутьевой форсунки слоя является нарушение его устойчивости. При более высокой скорости воздуха мелкие частицы начинают выноситься из слоя. В местах выноса сопротивления слоя падает. Чрезмерное повышение расхода воздуха через слой приводит к расстройству процесса горения.

Сжигание газа в топках котлов

Рисунок 9.1 — Структура горящего слоя твердого топлива

Сжигание газа в топках котловСжигание газа в топках котлов

а — электродный уголь 4,6 — 3,7 мм; 6 — антрацит 7,2 — 9 мм; в подмосковный уголь 4,8 — 6 мм; К — кислородная зона; В — восстановительная зона; скорость дутья — 0,5 м/с.

Рисунок 9.2 — Газообразование в слое горячего топлива

Сжигание газа в топках котлов

1 — дозирующее устройство; 2 — метатель; 3 — разгонная плита;

4 — распредели­тельная.

Рисунок 9.3 — Схемы забрасывателей топлива

10 КОНСТРУКЦИИ СЛОЕВЫХ ТОПОК С ЦЕПНЫМИ РЕШЕТКАМИ.

ТОПКИ С «КИПЯЩИМ» СЛОЕМ

Значительное распространение в промышленности получили механические слоевые топки с цепными решетками. Характерной особенностью этих топок является непрерывное перемещение топлива вместе с колосниковой решеткой, представляющей собой транспортер, выполненный в виде бесконечного полотна. Применение находят механические топки с колосниковыми решетками прямого и обратного хода (рис.10.1). В топке с решеткой прямого хода полотно с топливом перемещается от фронта топки к задней стенке (рис.10.1,а), а в топке с решеткой обратного хода -– от задней стенки к фронту (рис.10.1,б). Применяемые колосниковые полотна бывают чешуйчатого и ленточного типов.

В механической топке с чешуйчатой цепной решеткой прямого хода (рис.10,а) полотно решетки 1 состоит из отдельных колосников, укрепленных на бесконечных шарнирных цепях, надетых на две пары звездочек 2. Скорость движения решетки можно измерять в широких пределах (1–18 м/с). Топливо из загрузочного ящика 3 поступает на движущуюся решетку. Толщину слоя топлива устанавливают шибером 4, который может перемещаться по вертикали. Воздух для горения подводится под решетку. По мере продвижения решетки топливо выгорает. Образующийся шлак сбрасывается с решетки шлакоснимателем 5 в шлаковый бункер 6.

Секционное дутье. Процесс горения в топке с цепной решеткой в отличие от топки с периодической загрузкой топлива протекает непрерывно. По длине решетки процесс горения разделяется на следующие этапы:

– подготовка топлива (прогрев, подсушка, выделение летучих);

– горение кокса и летучих;

– выжиг ( догорание топлива ) и удаление шлака.

Так как для различных этапов горения требуется различное количество воздуха, применяют позонное (секционное) дутье. На рис.10.2 кривая 1 характеризует потребное количество воздуха для горения топлива по длине решетки прямого хода. При отсутствии позонного дутья поступление воздуха в топку характеризуется штриховой линией 2, а при секционном дутье – ломаной линией 3. Через последнюю, шлаковую зону, имеющую слой малой толщины, воздух подают в большем количестве, чем это необходимо для догорания топлива, чтобы обеспечить охлаждение шлака и решетки. Позонное дутье улучшает горение топлива, одновременно снижается и потеря теплоты с уходящими газами в связи с понижением общего для всей топки коэффициента избытка воздуха.

Зажигание слоя. Особенностью горения топлива в топке с цепной решеткой прямого хода является одностороннее верхнее его зажигание, т.к. свежее топливо из загрузочного ящика ложится на относительно холодные колосники. В данном случае получается схема поперечного движения топливного и газовоздушных потоков. Основным источником теплоты является излучение газов из топочного объема. Скорость распространения в слое горения направлена поперечно движению слоя.

Зажигание топлива от непосредственного его соприкосновения с горящими частицами играет небольшую роль в общем процессе воспламенения топлива. Скорость распространения горения от непосредственного контакта частиц составляет всего 0,2–0,5 м/ч, в то время как перемещение слоя вместе с решеткой имеет скорость, в десятки раз большую. В связи с указанной особенностью прогрева и воспламенения топлива при сжигании малореакционных и влажных топлив значительная часть цепной решетки может оказаться занятой предварительной подготовкой топлива.

Для интенсификации зажигания антрацита –топлива с малым выходом летучих применяют топочную камеру с сильно развитым и низко расположенным задним сводом, благодаря чему горячие газы, образующиеся в зоне наиболее активного горения, направляются к начальному участку слоя, способствуя зажиганию свежего топлива. Свод выполняют из кирпича, раскаляющегося во время работы, что способствует более полному выгоранию горючих из шлака.

При сжигании кускового торфа, имеющего значительную влажность (WР = 40÷50% ), для интенсификации подготовительных этапов применяют специальные предтопки. Торф подается в кирпичную шахту – предтопок, где частично подсушивается и затем поступает на цепную решетку.

Характерной особенностью горения топлива в топке с цепной решеткой обратного хода является нижнее неограниченное зажигание топлива. Топливо подается на решетку при помощи пневмомеханических забрасывателей.

«Острое дутье» в слоевых топках. Газы, выходящие из горящего на цепной решетке слоя топлива, наряду с инертными продуктами полного горения содержат горючие составляющие, а также кислород.

Во избежание значительных потерь теплоты от химического недожога продукты горения, содержащие горючие компоненты и кислород, необходимо в топочной камере хорошо перемешать для завершения горения. Эффективным способом интенсификации процесса перемешивания газов в топке является применение «острого дутья», т.е. ввод в топочную камеру относительно тонких струй воздуха с большой скоростью 50÷70 м/с для перемешивания продуктов сгорания. Расход воздуха на острое (вторичное) дутье составляет 5÷10 % общего количества воздуха.

Выжиг и удаление шлака. Для уменьшения потери химически связанной теплоты догорающего топлива необходимо всемерно интенсифицировать его выжег на шлаковом участке решетки. Эффективными в этом отношении являются низко расположенные горячие кирпичные своды. При налаженном процессе горения на решетке должно полностью заканчиваться примерно на расстоянии 0,3÷0,5м от места сброса шлака с решетки. В месте схода шлака устанавливают шлакосниматель, который несколько замедляет движение шлака, способствуя его выжигу, а также защищает решетку от оголения.

Применение горячего дутьевого воздуха способствует интенсификации горения топлива в слое. Предел подогрева воздуха лимитируется условиями работы решетки. При сжигании на решетке антрацита – топлива с малым выходом летучих, для которого тепловыделение происходит в основном в слое, подогрев воздуха применяют до 150÷170 °С. При сжигании топлив с большим выходом летучих, для которых тепловыделение в значительной степени переносится в топочный объем, применяют воздух, подогретый до 200÷250 °С.

Топки с кипящим слоем. Эффективное сжигание твердого мелкозернистого топлива (0÷20 мм) может быть достигнуто при использовании принципа кипящего (псевдосжиженного) слоя. Кипящий слой характеризуется скоростью первичного воздуха, превышающий предел устойчивости плотного слоя, но далеко не достигающей скорости витания средних частиц. При этих условиях все частицы в слое интенсивно перемешиваются, двигаясь колебательно вверх и вниз, причем в целом слой имеет относительно четкую верхнюю границу. Для кипящего слоя твердого топлива характерны повышенная его концентрация в объеме камеры горения, а также повышенная относительная скорость в слое, что создает благоприятные условия для скоростного горения топлива. В отличие от плотного (неподвижного) слоя, аэродинамическое сопротивление которого с увеличением интенсивности дутья возрастает по степенному закону, в кипящем слое сопротивление от этого фактора не зависит.

При малой скорости дутья слой остается неподвижным и работает как фильтрующий. При достижении критической скорости дутья сила давления газового потока в слое становится равной силе тяжести частиц. Слой начинает расширяться, и при дальнейшем увеличении скорости воздуха частицы приходят в движение. Объем слоя увеличивается в 1,2÷1,8 раза в зависимости от интенсивности дутья, формы и размеров частиц. Сопротивление кипящего слоя с изменением интенсивности дутья не изменяется, потому что при этом увеличивается расстояние между частицами, т.е. увеличивается проходное сечение для газа. При дальнейшем увеличении скорости дутья весь слой переходит во взвешенное состояние и может быть вынесен из рабочей камеры.

Для кипящего слоя подобно жидкости характерен линейный закон падения давления по его высоте. Давление (сопротивление) в кипящем слое пропорционально его высоте и плотности «кипящего» материала. В отличие от аэровзвеси, где относительная скорость частиц и газа приближается к нулю, для кипящего слоя в отдельные периоды (при падении частиц) она доходит до нескольких метров в секунду.

Впервые использование принципа кипящего слоя в топочном устройстве было начато в 1944 г. Работами Московского энергетического института.

Характерной отличительной особенностью топок МЭИ является двухступенчатая схема организации процесса горения. В первой ступени топки используется кипящий слой, где проводится интенсивная и глубокая тепловая подготовка топлива: прогрев, подсушка и выделение высокотемпературных горючих газов. Второй ступенью топки является камера дожигaния горючего газа, выдаваемого кипящим слоем, и содержащихся в нем частиц термически подготовленного уноса.

При работе таких топок на АШ в слой подают около трети воздуха, необходимого для полного сгорания топлива. Газообразование в кипящем слое происходит подобно газообразованию в плотном слое, однако кислородная и восстановительная зоны имеют увеличенные толщины. Температуру кипящего слоя поддерживают на уровне, исключающем плавление золы, во избежание шлакования слоя. Это может быть достигнуто установкой в слое охлаждающих поверхностей, рециркуляцией дымовых газов и др.

Более простой схемой является двухступенчатая однократерная схема с размещением второй ступени нeпосредственно под cлоем.

Нижняя часть котла включает:

1- кипящий слой из топлива (1 ступень); 2 — топочное пространство (2 ступень); 3 — экранные трубы; 4 — трубы для подачи топлива в слой; 5 — ступень испарения (конвективная); 6 — конвективный пароперегреватель; 7 — канал удаления шлака из слоя; 8 — устройство для шлакоудаления; 9 — решетка; 10 — окно подачи воздуха; 11 — насос (циркуляционный).

Преимуществом такой топки является снижение выбросов окислов азота (из-за относительно низкой температуры в слое).

В котлах с кипящим слоем может сжигаться также жидкое и газовое топливо. В этом случае топливо сжигается в слое из инертного материала. В качестве инертного материала используется песок, кирпичная крошка и т.д. За счет повышения коэффициента теплопередачи уменьшаются поверхность теплообмена и габариты котла.

Установки с кипящим слоем могут быть использованы для горения различных топлив.

По действующим нормам слоевые топки целесообразно применять для котлов паропроизводительностью до 10 кг/с (35 т/ч). Для установок большей производительности часто оказывается применение как слоевых, так и камерных топок.

Для сжигания в слое рекомендуются сортированные антрациты (АС и АМ) и полуантрациты, а также грохоченые и рядовые каменные и бурые угли с содержанием мелочи от 0÷6 до 60% с выходом летучих более 20%, кусковой торф, сланец, древесные отходы. Слоевые топки не рекомендуется применять для сжигания антрацитового штыба и рядовых антрацитов, тощих и бурых высоковлажных углей с WП > 3,35%·кг/МДж, отходов углеобогащения и фрезерного торфа. Слоевые топки с ручным обслуживанием допускаются для небольших паровых и водогрейных котлов паропроизводительностью до 0,3 кг/с (1 т/ч).

Для котлов паропроизводительностью до 1,8 кг/с (6,5 т/ч) при сжигании сортированных антрацитов АС и АМ, каменных и бурых углей можно применять топки с неподвижной решеткой с опрокидными колосниками и пневмомеханическим забросом топлива.

Для сжигания кускового торфа в котлах паропроизводительностью до 1,8 кг/с и древесных отходов в котлах паропроизводительностью до 2,8 кг/с рекомендуются простейшие шахтные топки с наклонной неподвижной решеткой, а для агрегатов большей производительности – шахтно-цепные топки с предтопками.

Работу слоевых топок характеризуют видимой плотностью теплового потока зеркала горения qR , видимой объемной плотностью тепловыделения qV , коэффициентом избытка воздуха α, потерями теплоты от химической qХ.Н. и механической qМ.Н. неполноты сгорания.

Для выбранного способа сжигания топлива принимают значения

Сжигание газа в топках котлов , Сжигание газа в топках котлов ,

после чего по расходу B и его теплоте сгорания Сжигание газа в топках котлов находят необходимые площадь зеркала горения R и топочный объем VT.

Сжигание газа в топках котлов

а — прямого хода; 6— обратного хода.

Рисунок 10.1 — Механические топки с колосниковыми решетками

Сжигание газа в топках котлов

а — продольный разрез; б — беспровальные колосники;

1 — фронтовой кожух; 2 — передний вал; 3 — угольный ящик; 4 — рама; 5 — колосниковое полотно; 6 — опорный рольганг; 7 —задний вал; 8 — шлакосниматель

Рисунок 10.2 — Чешуйчатая цепная решетка прямого хода типа ТЧ

Сжигание газа в топках котлов

Рисунок 10.3 — Подача воздуха в топку при секционном дутье

Сжигание газа в топках котлов

Рисунок 10.4 — Схема зажигательного слоя топлива на цепной решетке прямого хода

Сжигание газа в топках котлов

а — зависимость сопротивления слоя от скорости дутья;

б — изменение давления по высоте кипящего слоя.

Рисунок 10.5 — Характеристики кипящего слоя

Сжигание газа в топках котлов

а — топка с тангенциальным подводом вторичного воздуха;

б — топка с турбулентной горелкой; в — топка с циклонной горелкой.

Рисунок 10.6 — Схемы организации второй ступени топки с кипящим слоем

Сжигание газа в топках котлов

1 — барабан котла; 2 — экономайзер; 3 — испарительные поверхности; 4 — конвективный пакет пароперегревателя; 5 — пароохладитель; 6 — выходной пакет пароперегревателя; 7 — подача топлива; 8 — кипящий слой; 9 — сепаратор пыли; 10 — возврат пыли в кипящий слой;

11 — воздухоподогреватель; 12 — подача воздуха в кипящий слой.

Рисунок 10.7 — Принципиальная схема котла с топкой кипящего слоя с размещением

испарительных и пароперегревательных поверхностей в слое

Сжигание газа в топках котлов

1 — топочная камера; 2 — конусная часть топки; 3 — дутьевая решетка; 4 — дутьевая коробка; 5 — камера дожигания выпавших частиц; 6 — шнек золоудаления; 7 —топливный шнек; 8 — шуровочный вал; 9 — экранные трубы; 10 — коллектор; 11 — барабан; 12 — конвективный пучок; 13 —топливная течка; 14 — фурмы вторичного дутья; 15 — бак с гидрозатвором для золы; 16 — подвод сетевой воды; 17 — подвод первичного дутья; 18 — подвод воздуха в камеру дожигания; 19 — зажигательный пояс.

Рисунок 10.8 — Компоновка топки с кипящим слоем с водогрейным котлом

11 СХЕМЫ ПРИГОТОВЛЕНИЯ УГОЛЬНОЙ ПЫЛИ.

СЖИГАНИЕ ТВЕРДОГО ТОПЛИВА В КАМЕРНЫХ ТОПКАХ КОТЛОВ. СПОСОБЫ ТВЕРДОГО И ЖИДКОГО ШЛАКОУДАЛЕНИЯ

Система пылеприготовления характеризуется приготовлением пыли непосредственно у котельной установки с использованием для сушки топлива и его пневмотранспорта горячего воздуха или продуктов сгорания, образующихся в котле. Различают индивидуальные системы пылеприготовления с 11.1 Основные схемы пылеприготовления

Приготовление угольной пыли из кускового топлива производится в системе специальных устройств, в которых последовательно осуществляются первоначальное грубое дробление топлива на куски размером в несколько десятков миллиметров, сушка и, наконец, его размол до пылевидного состояния с размером частиц в несколько десятков или сотен микрометров. Часто размол и сушку топлива совмещают в одном устройстве.

Крупность топлива после предварительного грубого дробления (в валковых и молотковых дробилках) влияет на последующие этапы его сушки и размола. С увеличением крупности топлива возрастает расход энергии на приготовление пыли, увеличивается износ мелющих органов, а производительность мельницы снижается.

ВТИ и ИДТИ рекомендуют следующие характеристики дробления топлива;

Остаток на сите 5×5 мм R5, % — — 20

Остаток на сите 10х10 мм R10, % — 5

Максимальный размер куска, мм — — Не больше 15

Для влажных топлив в случае замазывания дробильного оборудования максимальный размер куска может быть до 25 мм.

После грубого дробления сырого топлива из него удаляются металлические предметы и щепа, могущие попасть в топливо при добыче и транспортировании.

Для размола топлива применяют центральные и индивидуальные системы пылеприготовления.

Схема центральной системы пылеприготовления показана на рис. 11.1, а. Предварительно подготовленное топливо из бункера сырого дробленого угля поступает в сушилку, далее — в мельницу, а затем в центральный бункер готовой пыли. Пылевым насосом пыль подается в расходные пылевые бункера котлов. Из бункеров пыль поступает в топочную камеру, куда также подается воздух вентилятором.

Положительной особенностью центральной системы пылеприготовления является независимость размольных установок от работы котла. Мельница может работать периодически, но с полной нагрузкой, когда удельный расход электроэнергии на пылеприготовление получается наименьшим. В топку котла подается пыль, подсушенная до заданной влажности. Вместе с тем центральное пылеприготовление (пылезавод) отличается сложностью, высокой начальной стоимостью и значительными эксплуатационными затратами. При такой схеме пылеприготовления вместе с подсушивающим агентом в атмосферу выбрасывается и некоторое количество топлива. Центральная система пылеприготовления применяется сейчас для блоков более 500—800 МВт. Целесообразность ее применения должна решаться на основе технико-экономических соображений.

Индивидуальная системапрямым вдуванием и с промежуточным пылевым бункером.

Индивидуальная система пылеприготовления с прямым вдуванием (рис. 11.1б) отличается жесткой связью мельничного оборудования с котлом. Изменение нагрузки котла требует и изменения режима работы мельничного оборудования. При работе котла со сниженной нагрузкой мельница (если она одна) оказывается недогруженной. В то же время при уменьшении производительности мельничного оборудования снижается и нагрузка котла.

Индивидуальная система пылеприготовления с промежуточным пылевым бункером показана на рис. 11.1(в). В этом случае работа пылеприготовительного оборудования независима от работы котла, что является основным достоинством этой системы пылеприготовления. Наличие промежуточного пылевого бункера повышает надежность установки. Этому способствует также связь мельничных устройств отдельных котлов с помощью пылевых шнеков, позволяющих передавать пыль в случае необходимости от одного котла к другому. В индивидуальной системе пылеприготовления с промежуточным бункером также имеется возможность полностью загружать мельничное оборудование. Мельничный вентилятор находится здесь в значительно более благоприятных условиях в связи с тем, что основная масса пыли через вентилятор не проходит. К недостаткам схемы с промежуточным пылевым бункером относится, в частности, увеличение затрат на оборудование.

Индивидуальная система пылеприготовления с прямым вдуванием находит применение при сжигании высокореакционных бурых и каменных углей, допускающих грубый помол. Индивидуальная система пылеприготовления с промежуточным бункером применяется для мощных котлов при работе на тощих и малореакционных углях, требующих тонкого помола.

11.2 Топки для факельного сжигания угольной пыли с гранулированным

шлакоудалением

В пылеугольных топках поведение шлакозолового остатка оказывает решающее влияние на производительность, надежность и экономичность топочного устройства. Развитие и совершенствование пылеугольных топок в основном были связаны с решением вопроса улавливания и удаления шлака. В отличие от слоевого сжигания твердого топлива, при котором 80 % золы остается в слое и только незначительная ее часть выносится в объем топочной камеры, а затем уносится газовым потоком в газоходы, при факельном сжигании вся зола проходит через топочный объем. Основная масса золы (85—95 %) уносится вместе с газовым потоком, а меньшая часть (5—15%) выпадает в топочной камере.

Температура пылеугольного факела, особенно его ядра, превышает температуру плавления золы: tф>t3.

В связи с этим при выгорании горючего зола топлива плавится и в виде мельчайших капелек в жидком состоянии перемещается с газообразными продуктами сгорания. Следует подчеркнуть, что частицы топлива, выносимые в небольшом количестве в топочный объем при слоевом сжигании, имеют размер 200÷300 мкм, в то время как при факельном сжигании средний размер частиц составляет 15÷30 мкм. Поступление в топочный объем всего количества золы топлива при пылесжигании и малый размер самих пылинок предопределяют большую суммарную поверхность оплавленных частиц золы. Расплавленный шлак, попадая на кирпичные стенки топочной камеры, зашлаковывает их и способствует их износу. При попадании на холодные конвективные поверхности нагрева котла расплавленный шлак оседает на трубах, постепенно образуя шлаковые наросты. При этом резко возрастает сопротивление газового потока, а также ухудшается передача теплоты поверхностям нагрева.

Широкое применение пылесжигания стало возможным лишь. при установке в топочной камере охлаждаемых водой (пароводяной смесью или паром) экранов, обеспечивающих защиту как стенок топки от разрушающего воздействия высокой температуры, зашлакования и химического взаимодействия с жидким шлаком, так и конвективных поверхностей нагрева от зашлаковывания. Кроме непосредственной защиты стенок топочной камеры от шлака, экраны воспринимают от газа и летящих частиц теплоту радиацией, снижая их температуру так, что при входе в конвективные элементы частицы шлака находятся уже в затвердевшем состоянии и не налипают на трубы. Топочные экраны наряду с выполнением указанных защитных функций являются наиболее эффективно работающими поверхностями нагрева с тепловой нагрузкой 0,1÷0,3 МВт/м2.

Пылеугольные топки, в которых выпадающая зола удаляется в твердом (гранулированном) виде, называют топками с твердым шлакоудалением (рис. 11.2).

Для охлаждения оседающих в топке жидких шлаковых частиц нижнюю часть топки выполняют в виде холодной шлаковой воронки, имеющей сплошное экранирование стен.

Наклон стенок воронки к горизонту составляет около 60° для обеспечения сползания гранулированного шлака в шлаковую шахту. Последняя находится под холодной воронкой.

Серьезнымнедостатком пылеугольных топок с твердым шлакоудалением является вынос из топочной камеры в газоходы агрегата основной массы золы топлива. Последнее определяет невозможность сколько-нибудь значительной интенсификации конвективной передачи теплоты во избежание истирания труб золой при увеличении скорости потока. При твердом шлакоудалении холодная воронка неблагопрятно влияет на процесс горения, так как зона низкой температуры оказывается при этом в непосредственной близости от горелок. В связи с этим стремятся отдалить горелки от холодной воронки, что приводит к увеличению высоты топки. Повышение температуры в области холодной воронки может привести к получению не гранулированного (сыпучего) шлака, а вязкой массы, что вызовет шлакование холодной воронки.

При значительном экранировании топочной камеры воспламенение топлива вообще затрудняется; особенно это относится к малореакционным углям типа АШ. Для интенсификации зажигания, а также повышения устойчивости горения малореакционных углей применяют зажигательный пояс, представляющий собой часть топочных экранов, утепленную огнеупорным покрытием в области горелок (рис. 11.3). Применяют два типа зажигательных поясов: покрытие гладких экранных труб фасонными кирпичами (рис. 11.3, а) и обмазку ошипованных труб огнеупорной карборундовой или хромитовой массой (рис. 11.3,6).

При фронтальном расположении горелок зажигательный пояс располагают обычно на фронтальной и боковых стенках. При встречном и угловом расположении зажигательный пояс размещается по всему периметру топки. Высота пояса зависит от производительности котла и доходит до 3—4 м.

Для более полного выгорания пыли в хвостовой части факела необходимо иметь высокую температуру. Это особенно важно при сжигании малореакционных углей, для которых здесь требуется температура порядка 1250÷1300 °С. Такое требование, однако, всегда приходит в противоречие с необходимостью охладить газы в топочной камере до температуры, исключающей шлакование конвективных поверхностей нагрева. Это противоречие, так же как и ряд других недостатков, присущих топкам с твердым шлакоудалением, устраняется при переходе на жидкое шлакоудаление.

11.3 Топки для факельного сжигания угольной пыли с жидким

шлакоудалением

В топках с жидким шлакоудалением температуру в нижней части топочной камеры поддерживают такой, чтобы обеспечить не только полное расплавление шлаков, но и надежное удаление их в жидком виде из топки. Схемы пылеугольных факельных топок с жидким шлакоудалением показаны на рис. 11.4.

В однокамерной открытой топке (рис. 11.4, а) пылевидное топливо через горелку поступает в камеру, стенки которой покрыты ошипованными футерованными экранными трубами. В связи с этим в камере при горении топлива развивается достаточно высокая температура, обеспечивающая плавление шлака. Расплавленный и уловленный здесь шлак через летку стекает в ванну (на рисунке не показана), где гранулируется водой и затем удаляется.

В камере охлаждения, имеющей открытые экранные поверхности и являющейся непосредственным продолжением камеры плавления, происходит охлаждение газа и содержащегося в нем расплавленного шлакового уноса. На выходе из камеры охлаждения при поступлении в последующие конвективные поверхности унос золы должен быть в твердом состоянии и иметь температуру, исключающую его налипание на поверхности нагрева.

В отличие от топок с твердым золоудалением, где в топочной камере оседает около 5% золы, а остальная зола уносится газообразными продуктами горения, в однокамерной открытой топке с жидким шлакоудалением улавливается и удаляется 15—30 % общего количества золы. Следует, однако, отметить, что для такой открытой топки в области перехода от «горячей» к «холодной» зоне, где температура снижается и шлак теряет текучесть, наблюдается интенсивное шлакование экранных поверхностей нагрева. Это усложняет эксплуатацию и снижает эффективность поверхностей нагрева.

Значительно более благоприятные условия работы полуоткрытой однокамерной топки с жидким шлакоудалением (рис. 11.4,б). Здесь благодаря специально выполненному пережиму зона плавления и зона охлаждения в значительной степени разделены. В камере горения экранные трубы ошипованы и покрыты огнеупорной обмазкой. Процесс сжигания топлива почти полностью завершается в этой камере; объем ее относительно ограничен, в связи с чем объемная плотность тепловыделения составляет здесь 0,5÷0,8 МВт/м3, а температура 1700÷1800 °С. В камере улавливается 20÷40 % золы топлива, удаляемой в жидком состоянии через летку. В верхней части топки расположены открытые экранные поверхности, обеспечивающие охлаждение газа и уноса.

В двухкамерной топке с жидким шлакоудалением (рис. 11.4, в) камера горения топлива с жидким шлаком и камера охлаждения разделены шлакосепарационной решеткой, выполненной из разведенных ошипованных экранных труб, имеющих огнеупорную обмазку. Основное количество расплавленного шлака улавливается в камере горения. Дополнительно уловленный в шлакосепараторе шлак стекает на подину топки, откуда через летку шлак поступает в водяную ванну для грануляции. В двухкамерной топке улавливается до 70 % всей золы. Еще большего улавливания золы (80÷95%) в пределах топочной камеры достигают при применении рассматриваемых ниже циклонных топок.

Улавливание значительного количества золы в пределах топочной камеры уменьшает загрязнение поверхностей нагрева, а также их износ летучей золой. При этом возможно повышение скорости дымовых газов, что интенсифицирует передачу теплоты конвективным поверхностям нагрева. При жидком шлакоудалении благодаря высокой температуре в топочной камере снижаются потери теплоты от механического недожога qм.н. Так, при сжигании АШ, при переходе от твердого шлакоудаления к жидкому потери теплоты от механического недожога снижаются с 6÷7 до 3-4 %.

К недостаткам топок с жидким шлакоудалением можно отнести повышенные потери с физической теплотой шлака. При многозольном топливе эти потери могут достигать 2÷3 %. Однако следует отметить, что теплота жидких шлаков и сами шлаки могут использоваться для различных технологических процессов.

Топки с жидким шлакоудалением применяют для низкореакционных топлив, имеющих благоприятные температурные и вязкостные характеристики золы и шлака, и топлив с относительно легкоплавкой золой.

§

Значительная интенсификация процесса горения твердого мелкодробленого топлива или грубой пыли, а также максимальное улавливание золы в пределах топочной камеры достигаются в циклонных топках. Циклонный принцип организации горения твердого топлива был предложен в СССР Г. Ф. Кнорре еще в начале 30-х годов. В промышленности применяют различные типы горизонтальных (малонаклонных) и вертикальных циклонных топок для сжигания мелкодробленого топлива или грубой пыли с жидким шлакоудалением.

Принципиальная схема циклонной топки с горизонтальным расположением камеры и жидким шлакоудалением показана на рис. 11.5, а. Топливо подают в циклонную камеру с первичным воздухом. На схеме показан ввод топливно-воздушной смеси через улитку в центральную часть камеры. По оси вводится только дробленка. При сжигании угольной пыли она вводится через тангенциальные сопла.

Вторичный воздух подают в камеру тангенциально через сопла-щели с большой скоростью (более 100 м/с), обеспечивая движение топливных частиц к стенкам камеры. Образующиеся в циклонной камере вихри способствуют интенсивному смесеобразованию и горению топлива как в объеме циклона, так и на его стенках.

Развиваемая в циклонной камере высокая температура (1700÷1800°С) приводит к расплавлению золы и образованию на стенках шлаковой пленки. Жидкий шлак вытекает из камеры через летку. Улавливание золы в пределах камеры составляет 85÷90 % и более. Отбрасываемые на стенки свежие частицы топлива прилипают к шлаковой пленке, где они интенсивно выгорают при обдувании их воздушным потоком.

В выходной части циклонной камеры имеется пережим (ловушка), через который продукты горения поступают в камеру дожигания. Наличие пережима приводит к уменьшению уноса. Крупные частицы циркулируют в камере до полной газификации. Выносимые из циклона мельчайшие частицы топлива догорают в камере дожигания.

Циклонные камеры работают с высокими объемными плотностями тепловыделения qv 1,5÷3 МВт/м3 и плотностью теплового потока на сечение циклона qFll÷16 МВт/м2 при малом коэффициенте избытка воздуха в циклоне α =1,08÷1,1.

Аэродинамическая картина потока в циклонной камере отличается сложным пространственным полем скоростей. Для характеристики движения потока в циклоне главный вектор скорости обычно представляют в виде трех составляющих: осевой (расходной) скорости wx, тангенциальной wτ и радиальной wr. На рис. 11.6 показано примерное распределение осевой и тангенциальной скоростей в циклонной камере, свидетельствующее о сложной аэродинамической структуре потока.

Длина циклонной камеры составляет 1,2÷1,5 ее диаметра.

Схема вертикальной циклонной топки (предтопка) с нижним выводом газов показана на рис. 11.5,б, а схема вертикальной циклонной топки с верхним выводом газов — на рис. 11.5, в.

Циклонные топки горизонтальные и вертикальные нашли широкое распространение за рубежом. Длительная эксплуатация циклонных топок с жидким шлакоудалением показала высокую их эффективность. Основными их преимуществами являются: высокая объемная плотность тепловыделения, измеряемая несколькими мегаваттами на кубический метр, что приводит к сокращению габаритов установки; улавливание в пределах камеры и удаление в жидком виде около 85÷90 % золы топлива, что дает возможность интенсифицировать работу конвективных поверхностей нагрева и в ряде случаев отказаться от установки газоочистительных устройств; возможность работы с малым коэффициентом избытка воздуха (α = 1,05÷1,1), что приводит к снижению потери теплоты с уходящими газами; возможность работы на дробленом топливе или пыли грубого помола, что позволяет упростить систему пылеприготовления и снизить расход электроэнергии на топливоприготовление.

К основным недостаткам циклонных топок относятся: затруднения при сжигании углей с малым выходом летучих, а также высоковлажных углей; увеличение потери теплоты с физическим теплом шлака (более 2%); повышенный расход энергии на дутье; относительно повышенный выход оксидов азота в связи с высокой температурой в циклонной камере.

Положительные особенности закрученных потоков используются в вихревых топках, известных под названием топок с пересекающимися струями. На рис.11.7 показаны схемы полузакрытых топок ЦКТИ и МЭИ, в которых благодаря соответствующей конфигурации нижней части топки и способу подвода пылевоздушной смеси со скоростью примерно 80 м/с создается вихревое движение с горизонтальной осью вращения. Горячие топочные газы пересекают пылевоздушный поток, обеспечивая его интенсивное воспламенение. Имеются топки с пересекающимися струями с вертикальной осью вращения потока. Циклонный принцип организации теплотехнологических процессов находит в последние годы широкое применение и при создании высокоэффективных энерготехнологических агрегатов.

Сжигание газа в топках котлов

а — центральная; б — индивидуальная с прямым вдуванием; в — индивидуальная с промежуточным пылевым бункером;

1 — бункер сырого дробленого угля; 2 — сушилка; 3 — мельница; 4 — центральный бункер готовой пыли; 5— насос для пыли; 6 — расходный бункер; 7 — вентилятор; 8 — топка котла; 9 — промежуточный бункер; 10 — шнек для пыли.

Рисунок 11.1 — Принципиальные схемы систем пылеприготовления

Сжигание газа в топках котлов

Рисунок 11.2 — Схема топки с твердым шлакоудалением

Сжигание газа в топках котлов

Рисунок 11.3 — Зажигательный пояс

Сжигание газа в топках котлов

1 — поверхность топки, покрытая огнеупорной обмазкой; 2 — холодная радиационная поверхность; 3 — подача топлива; 4 — шлакоулавливающий пучок труб, покрытых гарниссажной футеровкой.

Рисунок 11.4 — Схемы пылеугольных факельных топок с жидким

шлакоудалением

Рисунок 11.5 — Схема циклонных топок с жидким шлакоудалением

а — горизонтальная топка; б — вертикальная топка с нижним выводом газов; в — вертикальная кольцевая топка с верхним выводом газов.

а составляющие скорости циклонного потока; б — характер распределения тангенциальной и осевой скоростей по сечению потока.

Рисунок 11.6 — Принципиальная схема потока в циклонной камере

Сжигание газа в топках котлов

а – топка ЦКТИ; б – топка МЭИ.

Рисунок 11.7 — Вихревые топки с пересекающимися струями

12 КЛАССИФИКАЦИЯ И КОНСТРУКЦИЯ ПЫЛЕУГОЛЬНЫХ ГОРЕЛОК. КОМБИНИРОВАННЫЕ ГОРЕЛОЧНЫЕ УСТРОЙСТВА

§

Горелочное устройство должно обеспечивать хорошее перемешивание пыли и воздуха, возможно более раннее воспламенение пылевоздушной смеси и способствовать практически полному выгоранию пыли. Для камерного (факельного) сжигания твердого топлива наибольшее распространение получили вихревые круглые, а также прямоточные щелевые и сопловые горелки.

Вихревыми называют горелки, у которых первичный и вторичный воздух или только вторичный воздух закручивается специальными завихрителями. Закручивание потоков достигается при помощи улиток, устанавливаемых на входе в горелку, или лопаток, устанавливаемых в горелке аксиально или тангенциально в потоке первичного или вторичного воздуха. Принципиальные схемы вихревых горелок показаны на рис. 12.1. Наименование горелки отражает способ ввода первичного (с пылью) и вторичного воздуха. Так, в показанной на рис. 12.1, а прямоточно-улиточной горелке первичный воздух с пылью (пылевоздушная смесь или аэросмесь) подается через центральную трубу прямоточно, без закручивания. Вторичный воздух, подаваемый в топку через горелку, закручивается улиткой. Конструкция такой горелки (одноулиточная горелка) показана на рис. 12.2. Аэросмесь поступает в топку через центральную трубу, имеющую на конце чугунный наконечник. Регулирование выходного сечения для аэросмеси осуществляется конусом-рассекателем, который может перемещаться. Конус-рассекатель обеспечивает хорошее раскрытие пылевоздушной струи, а также подсос горячих топочных газов к корню факела, что интенсифицирует воспламенение топлива. Вторичный воздух, подаваемый через улитку, выходит в топку завихренным через кольцевое пространство, образуемое наконечником и обмуровкой. Для растопки, а также при необходимости подсвечивать пылеугольный факел предусматривают установку мазутной форсунки, для чего в корпусе горелки имеется отверстие 6. В вихревых горелках, показанных на рис. 12.1, б÷д, мазутные форсунки установлены по центру горелки.

В прямоточных щелевых горелках (рис. 12.3, а) подача в топку аэросмеси и вторичного воздуха осуществляется раздельно через узкие щели. Такие горелки выполняются с внешним 1 и с внутренним 2 вводом вторичного воздуха. В прямоточных сопловых горелках (рис. 12.3, б) ввод аэросмеси и вторичного воздуха осуществляется раздельно через круглые сопла.

Примером прямоточной щелевой горелки является широко используемая поворотная горелка. В этой горелке (рис. 12.4) аэросмесь поступает через центральный патрубок, откуда через поворотные сопла-щели она выходит в топку. Вторичный воздух поступает в топку по наружному соплу. Сопла при помощи электродвигателя можно поворачивать вверх и вниз от горизонтальной плоскости на 12÷20°. Это дает возможность менять положение факела в топке.

Для вихревых и прямоточных горелок характерны различные схемы воспламенения, дальнобойность факела и сопротивление горелочного устройства.

Схема зажигания пылевоздушной смеси для вихревых турбулентных горелок показана на рис. 12.5, а. В этих горелках улиточный подвод воздуха и наличие конуса-рассекателя обеспечивают выходящей пылевоздушной струе дополнительную составляющую скорости, перпендикулярную оси горелки. При этом выходящая из горелки струя имеет форму полого гиперболоида вращения. Образующаяся в центральной его части зона разрежения приводит к непрерывному подсосу сюда высокотемпературных топочных газов, обеспечивающих интенсивное зажигание пылевоздушной смеси. Воспламенение струи по внешней поверхности конуса тормозится прослойкой относительно холодного вторичного воздуха, находящегося между пылевоздушной смесью и горячими топочными газами. Кроме того, здесь сказывается и охлаждающее влияние экранных поверхностей нагрева. В отличие от вихревых турбулентных горелок в прямоточных горелках разнос пылевоздушной струи отсутствует (рис. 12.5, б). Факел получается более дальнобойным. Для горелки с внешним вторичным воздухом зажигание струи происходит по внешней ее поверхности. Наличие здесь вторичного воздуха, охватывающего пылевоздушную струю, несколько затрудняет прогрев и воспламенение смеси. Более целесообразна схема прямоточной горелки с внутренним подводом вторичного воздуха (рис. 12.5, в), при этом улучшаются условия воспламенения пылевоздушной смеси.

Условия воспламенения пылегазовой смеси, интенсивность горения и длина факела в значительной степени зависят от соотношения первичного и вторичного воздуха и их скоростей на выходе из горелки. Для ускорения воспламенения топлива количество первичного воздуха, как указывалось, целесообразно уменьшать. Снижение доли первичного воздуха особенно целесообразно при сжигании малореакционных трудновоспламеняемых углей (антрацит, полуантрацит, тощий уголь). Минимально возможное количество первичного воздуха определяется условиями транспорта пыли через горелку. При сжигании малореакционных углей количество первичного воздуха принимают до 20 % общего количества, а при сжигании бурых углей до 40÷45 %.

Для хорошего смесеобразования и подсоса горячих топочных газов, обеспечивающих прогрев и воспламенение пылевоздушной смеси, скорости первичного w1 и вторичного воздуха w2 на выходе из вихревых прямоточно-улиточных горелок тепловой мощностью 25÷35 МВт при сжигании каменных и бурых углей должны составлять соответственно 18÷20 и 22÷25 м/с; для двухулиточных горелок такой же мощности при сжигании антрацитового штыба, полуантрацитов и тощих углей — соответственно 14÷16 и 18÷21 м/с, а при сжигании каменных углей — 20÷22 и 26÷28 м/с.

Кроме указанных пылеугольных горелок тепловой мощностью 25 и 35 МВт, в соответствии с ОСТ 24.030.26-78 для котлов большой производительности имеются горелки мощностью 50, 75, 100, 135 и 150 МВт. Для этих горелок скорости первичного и вторичного воздуха должны быть более высокими.

Повышенные скорости выхода в топку первичного и вторичного воздуха (27÷30 м/с) принимаются для прямоточных горелок, что здесь особенно необходимо для улучшения воспламенения пылегазовой смеси. Повышенная скорость выхода воздуха в топку применяется и для сбросных горелок (35÷45 м/с), через которые в топку для сжигания сбрасываются тончайшая угольная пыль, не уловленная в циклоне, и транспортирующий ее из мельницы сушильный агент — воздух.

Если предусматривается возможность сжигания в топочной камере и твердого пылевидного, и газового топлив, применяют комбинированные пылегазовые горелки, что значительно упрощает топливно-воздушные коммуникации. На рис. 12.6 для примера показана комбинированная пылегазовая горелка, представляющая собой вихревую горелку со встроенной многоструйной газовой горелкой.

В центральной части горелки может быть установлена также и мазутная форсунка.

При размоле угля в молотковых мельницах в ряде случаев угольная пыль вводится в топочную камеру через специальные горелки—амбразуры (рис. 12.7). В установках малой производительности подача готовой угольной пыли с первичным воздухом иногда осуществляется при помощи простейшей открытой амбразуры (рис. 12.7, а). Сопла-шлицы для подачи в топку вторичного воздуха располагаются над и под амбразурой. При сжигании бурых углей и фрезерного торфа скорость выхода пылевоздушной смеси из амбразуры принимают 4÷5 м/с, а скорость выхода из сопл вторичного воздуха — 20÷25 м/с. Работа таких горелок — открытых амбразур характеризуется, однако, малым углом раскрытия факела, дальнобойностью, плохим перемешиванием пыли с вторичным воздухом, неблагоприятными условиями для воспламенения и горения пыли и др.

Амбразуры с горизонтальным рассекателем (рис. 12.7, б) обеспечивают увеличение угла раскрытия факела, улучшение воспламенения пыли, однако в них не устранен ряд других недостатков. Топка работает с повышенными потерями от механического недожога.

Значительного улучшения аэродинамики топки достигают применением эжекционных амбразур ЦКТИ (рис. 12.7, в). Подача вторичного воздуха при помощи щелевых насадок через амбразуру интенсифицирует перемешивание пылевоздушного потока и вторичного воздуха. Часть вторичного воздуха со скоростью 35÷45 м/с подается через сопла на задней стенке топки, чтобы ядро горения находилось в центральной части топочной камеры.

Нашли применение амбразуры с устройством для сжигания топлива в тонких струях. Например, амбразура конструкции МЭИ — Мосэнерго (рис. 12.7, г) разделена на вертикальные каналы — по числу сопл вторичного воздуха, который выходит со скоростью 40÷50 м/с и эжектирует пылевоздушную смесь. В топочную камеру смесь пыли с воздухом поступает со скоростью около 20 м/с через узкие вытянутые щели, расположенные на расстоянии 1500÷2000 мм. При этом обеспечивают интенсивный подсос горячих топочных газов и устойчивое зажигание и горение топлива.

Эффективной оказалась замена обычных амбразур и сопл вторичного воздуха вихревыми пылеугольными горелками. На рис. 12.7, д показано соединение шахты после молотковой мельницы с топочной камерой с помощью вихревой горелки. Условия воспламенения и горения пыли в этом случае достаточно благоприятны. Однако создаваемое молотковыми мельницами давление недостаточно для эффективной работы горелок, что сказывается на показателя экономичности топки.

§

Полнота выгорания топлива, условия эксплуатационно-надежной работы топки в значительной степени определяются размещением пылеугольных горелок. Наибольшее распространение для обычных однокамерных топок получило фронтальное (рис. 12.8, а), встречное (рис. 12.8,6) и угловое (рис. 12.8, в) расположение горелок.

При фронтальном расположении горелок примерный характер аэродинамики топки показан на рис. 12.9, а. По выходе из отдельных горелок струи первоначально развиваются самостоятельно, а затем сливаются в общий поток. При движении к задней стенке струя подсасывает из окружающей среды топочные газы, масса ее значительно увеличивается, а концентрация окислителя снижается. При ударе факела о заднюю стенку может иметь место ее шлакование. В связи с этим при фронтальном расположении наиболее целесообразно применение вихревых горелок с относительно коротким широким факелом.

При встречном расположении горелки (рис. 12.9, б и в) могут располагаться как на противоположных боковых, так и на фронтальной и задней стенках, возможна встречно-лобовая и встречно-смещенная их компо­новка. При встречно-лобовой ориентации горелок (рис. 12.9, б) в топке получается концентрированный удар встреч­ных потоков. Часть общего потока направляется в верхнюю половину топки, часть опускается в холодную воронку. При неравенстве импульсов возникает асимметричность течения в вертикальной плоскости и результативный факел прибли­жается к одной из стен, что может вызвать ее шлакование.

При встречно-смещенной компоновке горелок по схеме МЭИ (рис. 12.9, в) горящие потоки взаимно проникают друг в друга. При этом имеет место лучшее заполнение фа­келом топочного объема, обеспечивается принудительный подвод теплоты к корню факела, улучшается выгорание топлива при бесшлаковочном режиме работы экранов. В случае применения встречно-смещенной компоновки го­релок более целесообразными являются щелевые горелки.

При угловом расположении горелок возможны следую­щие схемы их установки (рис. 12.10): диагональная, блоч­ная, тангенциальная. При таком размещении горелок воз­никает ряд конструктивных трудностей. Наблюдается так­же шлакование стенок. При тангенциальном расположении горелок при взаимодействии струй образуется единый за­крученный поток, направляющийся вверх и вниз топочной камеры. По центру топки образуется область несколько по­ниженного давления, что стабилизирует положение факела. Наличие крутки потока сохраняется вплоть до выхода из топки. При вытянутой форме сечения топки в плане может иметь место искажение аэродинамики потока, сопровож­дающееся шлакованием стенок. Поэтому при тангенциаль­ной компоновке горелок целесообразно, чтобы горизон­тальное сечение топочной камеры по форме приближалось к квадратному.

При фронтальном, встречном и угловом расположении горелки по высоте топки могут размещаться в один-два и более ярусов.

Количество горелок размещенных в топке, определяется на основе следующих расчетов. Тепловая мощность топки Qтт , МВт,

Qтт = Bp Qнр (12.1)

где Вр — общий расчетный расход топлива на котел, кг/с;

Qнр — теплота сгорания топлива, МДж/кг.

Тепловая мощность горелки Qг, МВт,

Qг = Вг Qнр (12.2)

где Вр—расход топлива на одну горелку, кг/с.

Количество горелок

п = Врг. (12.3)

С увеличением паропроизводительности котла количест­во горелок увеличивается.

Так, для котла производительностью 20,8 кг/с (75 т/ч) при тепловой мощ­ности топки около 60 МВт применяют две-три вихревые горелки при фронтальном и две-четыре горелки при встреч­ном их расположении; при угловой компоновке применяют четыре прямоточные горелки. Для котла производитель, 89 кг/с (320 т/ч) при тепловой мощности топки 290 МВт применяют 6÷8 встречных или 16 угловых горе­лок.

По конфигурации факела различают топки с U-образ-ным факелом (рис. 12.1, а) и L-образным факелом (рис. 12.1, б). Наибольшее распространение нашли топки с L-об­разным факелом. По способу удаления шлака различают пылеугольные топки с твердым (гранулированным) и жид­ким шлакоудалением.

Сжигание газа в топках котлов

а—прямоточно-улиточная; б — прямоточно-лопаточная; в — двухулиточная; г — улиточно-лопаточная; д — лопаточно-лопаточная;

I — первичный воздух с угольной пылью; II — вторичный воздух

Рисунок 12.1 — Принципиальные схемы пылеугольных вихревых горелок

1 — улитка вторичного воздуха; 2 — входной патрубок первичного воздуха;

3 — труба первичного воздуха; 4 — наконечник; 5 — конус-рассекатель; 6 — отверстие для мазутной форсунки; 7 — штурвал управления конусом; 8 — рукоятка языкового шибера; 9 — порог

Рисунок 12.2 — Вихревая пылеугольная горелка ОРГРЭС

Рисунок 12.3 — Принципиальная схема прямоточных горелок

а — щелевая горелка; б — сопловая горелка; I — аэросмесь; II — вторичный воздух

Рисунок 12.4 — Щелевая поворотная горелка
1 — патрубок первичного воздуха; 2 — сопло первичного воздуха; 3 —

сопло вторичного воздуха

Рисунок 12.5 — Схема зажигания пылевоздушной смеси:

а — круглая турбулентная горелка; б — прямоточная горелка с внешним вторичным воздухом; в — прямоточная горелка с внутренним вторичным воздухом; I — аэросмесь; II — вторичный воздух

1 — улитка вторичного воздуха; 2 — улитка аэросмеси; 3 — труба аэросмеси; 4 — внутренняя труба; 5 — газовый коллектор

Рисунок 12.6 — Пылегазовая горелка

а — топка с открытой амбразурой; б — амбразура с горизонтальным рассекателем; в — эжекционная амбразура; г—амбразура с плоскими параллельными струями; д — вихревая горелка;

1 — шахта; 2 — амбразура; 3 — сопла вторичного воздуха (верхние); 4 —сопла вторичного дутья (нижние); 5 — сопла вторичного воздуха; 5 — рассекатель; 7 — горелка; 8 — ввод вторичного воздуха

Рисунок 12.7 — Схемы горелочных устройств топок с молотковыми

мельницами

Рисунок 12.8 — Схема расположения горелок в топочной камере
Рисунок 12.9 — Аэродинамика топки с фронтальной (а) и встречной (б, в)

компоновками горелок

а — диагональное; б — блочное (фокусы по большой оси потока); в — блочное (фокусы по малой оси потока); г, д — тангенциальное с вращением в разные стороны

Рисунок 12.10 — Схема движения потоков в топке с угловым расположением горелок

Рисунок 12.11 — Схема топок с U-образным и L-образным факелами

§

Тепловой схемой котла называют схему, устанавливающую взаимосвязь элементов котла: распределение приращения энтальпии воды, пароводяной смеси, пара и воздуха в элементах котла; размещение элементов котла по ходу движения потока продуктов сгорания.

При конструировании котла целесообразно выполнение двух условий:

1) теплоноситель с высокой температурой должен омываться ПС с наиболее высокими температурами.

2) Использование противоточных схем движения теплоносителей.

Выполнение этих условий не всегда возможно из-за ограничения термической стойкости материалов поверхности нагрева и надежности их работы.

Тепловая схема котла призвана обеспечить оптимальные, конструктивные и эксплуатационные характеристики котла, и определяется параметрами пара; типом и мощностью котла; видом топлива и способом его сжигания. Характерными параметрами тепловой схемы являются относительное приращение энтальпии воды при ее нагреве и испарении и пара при его перегреве; температура продуктов сгорания на выходе из топки; температура подогрева воздуха и уходящих продуктов сгорания.

Распределение приращения энтальпии:

Сжигание газа в топках котлов , (15.1)

где Сжигание газа в топках котлов — приращение энтальпии в данном элементе, кДж/кг;

Сжигание газа в топках котлов — энтальпии перегретого пара и питательной воды, поступающей в котел, кДж/кг.

С повышением параметров пара растет тепловосприятие в/э и п/п испарительных поверхностей нагрева. Процесс получения пара в котле изобарный.

15.1 Компоновка котлов

Под компоновкой котлов подразумевается взаимное расположение газоходов и поверхностей нагрева. В бывшем СССР и за рубежом применяют компоновки котлов по схемам на рис. 15.1.

Наиболее распространена П-образная компоновка (рис. 15.1, а, б). Преимуществами ее являются подача топлива в нижнюю часть топки и вывод продуктов сгорания из нижней части конвективной шахты. Недостатки этой компоновки — неравномерное заполнение газами топочной камеры и неравномерное смывание продуктами сгорания поверхностей нагрева, расположенных в верхней части котла, а также неравномерная концентрация золы по сечению конвективной шахты.

Т-образная компоновка с двумя конвективными шахтами, расположенными по обе стороны топки, с подъемным движением газов в топке (рис. 15.1, в) позволяет уменьшить глубину конвективной шахты и высоту горизонтального газохода, но наличие двух конвективных шахт усложняет отвод газов.

Трехходовая компоновка с двумя конвективными шахтами (рис. 15.1, г) иногда применяется при верхнем расположении дымососов. Четырех ходовая компоновка с двумя вертикальными переходными газоходами, заполненными разряженными поверхностями нагрева, применяется при работе котла на зольном топливе с легкоплавкой золой.

Башенная компоновка(рис. 15.1, е) используется для пиковых котлов, работающих на газе и мазуте, в целях использования самотяги газоходов. При этом возникают затруднения, связанные с осуществлением опорной конструкции для конвективных поверхностей нагрева.

U-образная компоновка синверторной топкой с нисходящим в ней потоком продуктов сгорания и подъемным их движением в конвективной шахте (рис. 15.1, д) обеспечивает хорошее заполнение топки факелом, низкое расположение пароперегревателей и минимальное сопротивление воздушного тракта вследствие малой длины воздуховодов. Недостаток такой компоновки — ухудшенная аэродинамика переходного газохода, обусловленная расположением горелок, дымососов и вентиляторов на большой высоте. Такая компоновка может оказаться целесообразной при работе котла на газе и мазуте.

а — П-образная; б — П-образная двухходовая; в — Т-образная с двумя конвективными шахтами; г — с U-образными конвективными шахтами; д — с инвертной топкой; е— башенная.

Рисунок 15.1 — Схемы компоновок котлов

17 ХАРАКТЕРИСТИКА И КОНСТРУКЦИИ КОТЛОВ. ЭНЕРГЕТИЧЕСКИЕ КОТЛЫ С ЕСТЕСТВЕННОЙ ЦИРКУЛЯЦИЕЙ

§

В промышленности и на тепловых электростанциях широко распространены котлы для выработки водяного пара различных параметров с естественной или принудительной циркуляцией. Иногда для получения пара применяют котлы особой конструкции и специализированного назначения: котлы с промежуточными теплоносителями, котлы с давлением в газовом тракте; реакторы и парогенераторы атомных электростанций; котлы, использующие теплоту газов технологических и энерготехнологических агрегатов, и пр.

Стационарные котлы, предназначенные для выработки пара, используемого технологическими и бытовыми потребителями, а также в турбоагрегатах для выработки электроэнергии, стандартизованы по параметрам и мощности (ГОСТ 3619-82). Предусматривается производство следующих стационарных котлов:

— котлы низкого давления с естественной и принудительной циркуляцией, в том числе котлы с давлением пара 0,88 МПа (9 кг/см2), производительностью 0,16—1 т/ч насыщенного пара, температура питательной воды 50°С; пар используется производственными и бытовыми потребителями;

— котлы среднего давления, к которым относятся котлы с естественной циркуляцией с давлением пара для выработки насыщенного и слабо перегретого пара давлением 1,36 МПа (14кгс/см2), производительностью 2,5÷160т/ч и температурой питательной воды 105 °С;

— котлы с естественной циркуляцией для выработки насыщенного и слабо перегретого пара с давлением 2,36 МПа (24кгс/см2), производительностью 50—160т/ч и температурой питательной воды 105 °С;

— котлы среднего давления 3,9 МПа (40кгс/см2), с естественной циркуляцией, вырабатывающие перегретый пар с давлением 3,9 МПа (40кгс/см2), температурой 440°С, производительность этих котлов 10÷160 т/ч при температуре питательной воды 150°С;

котлы высокого давления с естественной и принудительной циркуляцией производительностью 220÷820 т/ч. Эти котлы вырабатывают перегретый пар с давлением 9,8 МПа (100кгс/см2), температурой 540°С при температуре питательной воды 215 °С;

— котлы высокого давления — 13,8 МПа (140 кгс/см2), температура перегретого пара 540÷560°С, производительность 210÷1000 т/ч, температура питательной воды 215 °С;

— котлы сверхкритического давления прямоточные, производительностью 1000÷3950 т/ч, вырабатывающие пар с давлением 25 МПа (255 кгс/см2), с температурой перегретого пара 540÷560°С, температура питательной воды 270 °С.

Обозначение типов котлов: естественной циркуляцией — Е, с промежуточным перегревом — ЕПР, прямоточные — П, с промежуточным перегревом — ППР.

К основным параметрам паровых котлов ГОСТ относит номинальную производительность D, кг/с; номинальное давление пара р, МПа (кгс/см2); температуру перегретого пара tnn, °С; номинальную температуру питательной воды в, °С; КПД брутто.

Первая ступень энергетических параметров пара (3,90 МПа, 440 °С) принята, исходя из возможности выполнения пароперегревателя и ступеней высокого давления турбины из углеродистой стали. Температура труб пароперегревателя должна быть не выше 500°С. Давление 3,90 МПа принято по условию допустимой конечной влажности пара в ступенях низкого давления турбины 10÷12%. Давление 9,80 МПа соответствует максимально допустимой при принятой температуре пара 540 °С, влажности пара в турбине, которая в этом случае не превышает 12 %.

Параметры 13,8 МПа, 560°С выбраны, исходя из условий возможного повышения начального давления при наличии промежуточного перегрева пара и сохранении при этом допустимой конечной влажности пара. Значения сверхвысоких параметров пара определяются условиями надежной работы современных легированных марок стали. Ведутся работы по применению пара и более высоких параметров. Имеются опытные установки с давлением пара 29,4 МПа и температурой 600 °С.

Котлы для выработки пара высокого и сверхкритического (25 МПа) давления предназначаются для тепловых электростанций средней и большой мощности. Шкалы давления и производительности энергетических котлов в ГОСТ приняты соответственно параметрам пара и мощности стандартизированных турбоагрегатов, исходя из установки одного-двух котлов на турбоагрегат.

Стандартизация параметров пара и мощности стационарных котлов, введенная у нас еще в предвоенные годы, позволила организовать серийное производство энергетического оборудования, что существенно уменьшило стоимость изготовления котлов и необходимого для них вспомогательного оборудования, а также обеспечило применение наиболее рациональных решений в энергетике.

Преимущественно применяемые в промышленности котлы с естественной и принудительной циркуляцией принципиально различаются только организацией гидродинамики в испарительных поверхностях нагрева. Схемы организации движения воды, пароводяной смеси и пара в этих котлах показаны на рис. 17.1.

В котлах с естественной циркуляцией (рис. 17.1, а) питательная вода подается насосом в экономайзер, а из него в верхний барабан. В процессе естественной циркуляции, возникающей в испарительных поверхностях нагрева, образовавшаяся пароводяная смесь направляется в барабан, в котором происходит разделение пара и воды. Из барабана пар направляется на перегрев в пароперегреватель и затем — к потребителям. При критическом давлении в котле естественная циркуляция невозможна. Это положение,’ а также условия надежности циркуляции, увеличение массы и стоимости конструкции по мере повышения давления в котле определили применение котлов с естественной циркуляцией при давлении до 13,8 МПа. Котлы низкого и среднего давления преимущественно выполняют с естественной циркуляцией, что объясняется в основном менее жесткими требованиями к качеству питательной воды, более простой системой автоматизации процессов горения и питания и отсутствием затрат электроэнергии на осуществление движения рабочей среды в испарительной системе.

В котлах с многократной принудительной циркуляцией (рис. 17.1,6) питательная вода подается насосом в экономайзер и далее в барабан. В испарительных поверхностях нагрева циркуляция осуществляется принудительно за счет работы насоса, включенного в контур циркуляции. Разделение пара и воды происходит в барабане, из которого пар направляется в пароперегреватель и далее к потребителям.

Котлы с многократной принудительной циркуляцией применяют в основном для использования теплоты газов технологических и энерготехнологических агрегатов для выработки пара низких и средних параметров. При высоком давлении в таких котлах усложняются конструкции и условия работы циркуляционных насосов, работающих на воде с температурой более 300 °С. При давлении 13,8 МПа и выше на районных КЭС и ТЭЦ обычно применяют прямоточные котлы. В прямоточных котлах (рис. 17.1, в) экономайзер, испарительная поверхность нагрева и пароперегреватель конструктивно объединены и, проходя их последовательно, вода нагревается, испаряется и образовавшийся пар перегревается, после чего направляется к потребителям. Полное испарение воды происходит за время однократного прямоточного прохождения воды в испарительной части поверхности нагрева. Отсутствие барабана в прямоточных котлах высокого давления существенно (на 8÷10%) снижает затраты металла на изготовление котла по сравнению с барабанным котлом такой же мощности и давления. Котлы с давлением 25 МПа выполняют только прямоточными.

Имеются многочисленные конструкции всех типов котлов, что определяется многими факторами, влияющими на выбор того или иного технического решения: параметрами пара, производительностью, видом топлива и способом его сжигания, характеристикой питательной воды, требуемыми эксплуатационными показателями. Общие тенденции развития конструкций котлов определяются требованиями повышения надежности и экономичности работы, т. е. увеличения КПД брутто и нетто, снижения удельных затрат металла, стоимости изготовления и монтажа уменьшения вредных выбросов, обеспечения безопасности работы и облегчения труда персонала.

§

Конструкции энергетических котлов с естественной циркуляцией сформулировались в 1930÷1940гг. Определяющее влияние на принятые конструктивные решения оказало развитие техники водоподготовки и водного режима котлов, определившее безнакипную их работу, а также топочной техники, обеспечивающей рациональное факельное сжигание не только газа и мазута, но и твердого топлива в пылевидном виде.

Современные котлы с естественной циркуляцией имеют следующие особенности:

1) применение топок для факельного сжигания газа, мазута и твердого топлива в виде пыли. В пылеугольных топках предусматривают сухое или жидкое шлакоудаление;

2) выполнение испарительных поверхностей нагрева в виде экранов, полностью закрывающих стены топочной камеры, а в котлах большой мощности также и ширм, размещенных в верхней части топки. Наличие одного верхнего барабана, в который включаются все испарительные циркуляционные контуры котла. Применение ступенчатого испарения с выносными сепараторами;

3) развитие поверхностей нагрева пароперегревателя, размещаемого непосредственно за фестоном топки, и применение устройств для регулирования температуры перегрева пара;

4) развитие поверхности нагрева экономайзера с возможным частичным испарением в нем воды и воздухоподогревателя, в котором завершается глубокое охлаждение продуктов сгорания. В котлах среднего давления, предназначенных для работы на газе и мазуте, экономайзер и воздухоподогреватель выполняются одноступенчатыми и размещают последовательно по ходу газов. В котлах с пылеугольными топками экономайзер и воздухоподогреватель

для высокого подогрева воздуха выполняют в две ступени с расположением первой по ходу воды ступени экономайзера между первой и второй ступенями воздухоподогревателя;

5) применение модульной унификации отдельных элементов котла и поставка их заводом вместе с облегченной обмуровкой крупными транспортабельными блоками.

На рис. 17.2 показаны общий вид и циркуляционная схема котла среднего давления, предназначенного для работы на природном газе и мазуте. Изображенный на рисунке котел типа БМ-35-РФ имеет следующие характеристики: паропроизводительность 50 т/ч, давление перегретого пара 3,90 МПа (40кгс/см2), температура перегретого пара 440, питательной воды 150°С. Стенки камерной топки полностью экранированы трубами испарительной поверхности нагрева. Под топки» не экранирован. На фронтовой стенке топочной камеры установлены три газомазутные горелки в два яруса по высоте. Объемная плотность тепловыделения топочной камеры при номинальной нагрузке 230 кВт/м3.

В котле предусмотрено двухступенчатое испарение. Во вторую ступень испарения с выносными циклонами включены основные части экранов, расположенных на боковых стенах топки. Все остальные испарительные экранные поверхности нагрева включены в барабан (первая ступень испарения). На выходе из топки имеется трехрядный фестон, образованный разведенными трубами заднего экрана. Подъемные трубы экранов имеют диаметр 60х3 мм, а опускные 80х4 мм. Шаг труб боковых экранов 210, заднего экрана 80 мм. Пароводяная смесь, поступающая из экранов первой ступени испарения, разделяется на пар и воду в циклонах, установленных в барабане. Диаметр барабана 1500 мм. Тонкая сепарация пара осуществляется в жалюзийных сепараторах, установленных на выходе из барабана. Из выносных циклонов пар поступает в паровое пространство барабана под жалюзийными сепараторами. За сепаратором в барабане размещен распределительный щит, обеспечивающий равномерный отбор пара из барабана в пароперегреватель. Непосредственно за фестоном в горизонтальном газоходе находится пароперегреватель, выполненный в две ступени. В первой ступени движение потока пара по отношению к потоку газов противоточно-прямоточное, а во второй ступени змеевики на выходе пара включены прямоточно, а входные — противоточно. Трубы змеевиков пароперегревателя имеют диаметр 38х3 мм и выполнены из стали 20, а выходных змеевиков — из стали 15хМ.

Регулятор температуры пара, представляющий собой пароохладитель поверхностного типа, включен по пару в рассечку между первой и второй ступенями пароперегревателя. В регуляторе перегрева охлаждающая вода параллельными потоками движется по петлеобразным трубам диаметром 25×3 мм, расположенными внутри коллектора диаметром 325 мм. Охлаждаемый пар омывает трубы поперечным потоком и отводится во вторую ступень пароперегревателя. Регулирование температуры пара осуществляется изменением количества питательной воды, проходящей через охлаждаемые трубы.

Экономайзер кипящего типа выполнен из четырех пакетов, расположенных в опускной шахте. Змеевики экономайзера из труб диаметром 32х3 мм расположены в шахматном порядке с шагом между трубами s1 = 60, s2=40 мм. На входе воды из коллектора в трубы первого по ходу воды пакета экономайзера установлены шайбы для обеспечения устойчивой гидродинамической характеристики экономайзера при работе его на двухфазной среде. В периоды растопки экономайзер может быть включен в линию рециркуляции воды из барабана, что обеспечивает его надежное охлаждение.

Воздухоподогреватель трубчатый, из труб диаметром 40×1.5 мм, состоит из шести секций. Он установлен последним по ходу продуктов сгорания в опускном газоходе, выполнен в два хода по воздуху. Газы проходят внутри труб, воздух омывает трубы снаружи. Одноходовая компоновка экономайзера и воздухоподогревателя определяется стремлением упростить конструкцию конвективных поверхностей нагрева и возможна при принятых низких (200÷250 °С) температурах подогрева воздуха.

Компоновка котла выполнена по П-образной схеме и предусматривает возможность расположения дымососа и вентилятора на нулевой отметке.

На рис. 17.3 приведена конструкция одной из модификаций серийного унифицированного для разных топлив котла типа ТП-230-Б, давление пара 9,81 МПа (100 кгс/см2), паропроизводительность 230 т/ч (64 кг/с) при температуре перегрева пара 510°С и 220 т/ч (51 кг/с) при 540°С. В зависимости от вида используемого твердого топлива изменяются поверхности нагрева конвективного пароперегревателя, второй ступени экономайзера и воздухоподогревателя.

На рис. 14.6 показан котел с сухим шлакоудалением из топки, такие же установки выпускают и с жидким шлакоудалением с утеплением холодной воронки и нижней части экранов. Щелевые или круглые горелки размещены по углам топки. На стенках топки расположены испарительные экраны из труб диаметром 76 с шагом 95 мм. Экраны секционированы в поставочные блоки, имеющие индивидуальные коллекторы и водоподводящие и пароотводящие трубы. Верхняя часть труб заднего экрана образует четырехрядный фестон на выходе продуктов сгорания из топки. В котле организовано двухступенчатое испарение с включением солевого циркуляционного контура в выносные циклоны.

Пароперегреватель состоит из поверхности нагрева, расположенной на потолке топки и конвективной опускной шахте, ширмового пакета, размещенного за фестоном, и конвективного пакета, устанавливаемого за ширмовым пакетом. Регулирование температуры пара осуществляется впрыском конденсата в трубопровод, соединяющий ширмовой и конвективный пакеты пароперегревателя. Экономайзер и воздухоподогреватель двухступенчатые. Экономайзер выполнен из змеевиков горизонтальных труб малого диаметра (38мм). Воздухоподогреватель трубчатый, из труб диаметром 40 мм. Конвективная шахта, начиная со второй ступени воздухоподогревателя, разделена по глубине шахты на две половины для лучшей организации теплообмена в воздухоподогревателе и облегчения блочного изготовления. Топка имеет натрубную обмуровку. Котел скомпонован по П-образной схеме. Топка образует подъемную шахту, пароперегреватель расположен в горизонтальном газоходе, а конвективные поверхности нагрева в опускной шахте.

а — барабанный с естественной циркуляцией; б — с многократно-принудительной циркуляцией; в—прямоточный; 1 — экономайзер; 2 — испарительные поверхности нагрева; 3 — пароперегреватель; 4 — воздухоподогреватель; 5 — переходная зона испарительной поверхности нагрева; 6 — конвективный пароперегреватель; 7 — сепаратор пара.

Рисунок 17.1 — Типы котлов

1 — экономайзер; 2 — барабан; 3 — фронтовой экран; 4 — задний экран; 5 — коллектор бокового экрана; 6 — выходной коллектор основного бокового экрана; 7 —циклон II ступени испарения; 8 — фестон; 9 — пароперегреватель; 10 — воздухоподогреватель; п.в. — питательная вода; н, п. — насыщенный пар; п. п. — перегретый пар; х. в. — холодный воздух; т —топливо; у, г. — уходящие газы

Рисунок 17.2 — Общий вид котла БМ-35-РФ и его циркуляционная схема

1 — топочная камера; 2 — горелки; 3 — фестон; 4 — конвентивный пароперегреватель; 5 — экономайзер II ступени; 5 — воздухоподогреватель II ступени; 7 — экономайзер I ступени; 8 — воздухоподогреватель I ступени

Рисунок 17.3 — Котел типа ТП-230-Б

18 ПРЯМОТОЧНЫЕ КОТЛЫ С МНОГОКРАТНОЙ ЦИРКУЛЯЦИЕЙ. КОТЛЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

18.1 Прямоточные котлы

Организация испарения воды и перегрева пара при прямоточном движении потока была реализована в ряде конструкций котлов. На рис. 18.1 показаны схемы получивших дальнейшее развитие и применение прямоточных котлов Рамзина, Бенсона и Зульцера.

В прямоточных котлы большой паропроизводительности при высоких, сверхвысоких и сверхкритических параметрах пара широко применяются на современных тепловых электростанциях. Такие котлы выпускаются промышленностью для работы на различных видах топлива, производительностью 210 и 1000 т/ч, с начальными параметрами пара 13,7 МПа (140 кгс/см2), 560°С и промежуточным перегревом до 560°С, а также производительностью 1000, 1650 и 2650, 3650, 3950 т/ч, с параметрами пара 25 МПа (255 кгс/см2), 565°С и промежуточным перегревом его до 567 °С.

На промышленных предприятиях и на небольших электростанциях прямоточные котлы в настоящее время не используются вследствие нецелесообразности применения пара сверхвысоких параметров в котлах относительно небольшой мощности; высоких требований к питательной воде, обеспечение требуемого качества которой затруднено большими потерями конденсата пара; дополнительных расходов электроэнергии на осуществление циркуляции среды в поверхностях нагрева и усложнение систем автоматического регулирования.

18.2 Котлы специального назначения

18.2.1 Низконапорные и высоконапорные паропроизводящие установки

Для производства электроэнергии находят применение комбинированные парогазовые установки (ПГУ), объединенные в единой тепловой схеме. При этом достигается снижение удельного расхода топлива и капитальных затрат. Наибольшее применение находят ПГУ с высоконапорной перепроизводящей установкой (ВНППУ) и с низконапорной паропроизводящей установкой (ННППУ). Иногда ВНППУ называют высоконапорными котлами.

В отличие от котлов, работающих под разряжением с газовой стороны, в топочной камере и газоходах котлов высоконапорных и с наддувом создается давление относительно небольшое у ННППУ (0,005÷0,01 МПа) и повышенное у ВНППУ (0,5÷0,7 МПа).

Работа котла под давлением характеризуется рядом положительных особенностей. Так, полностью исключаются присосы воздуха в топку и газоходы, что приводит к уменьшению потери теплоты с уходящими газами, а также к снижению расхода электроэнергии на их перекачку. Повышение давления в топочной камере открывает возможность преодоления всех воздушных и газовых сопротивлений за счет дутьевого вентилятора (дымососная тяга может отсутствовать), что также приводит к уменьшению расхода электроэнергии в связи с работой дутьевого устройства на холодном воздухе.

Создание избыточного давления в топочной камере приводит к соответствующей интенсификации процесса горения топлива и позволяет существенно повысить скорости газов в конвективных элементах котла до 200÷300 м/с. При этом увеличивается коэффициент теплоотдачи от газов к поверхности нагрева, что приводит к уменьшению габаритов котла. Вместе с тем его работа под давлением требует плотной обмуровки и различных приспособлений против выбивания продуктов сгорания в помещение.

На рис. 18.2 показана схема парогазовой установки (ПГУ) с высоконапорным котлом. Сжигание топлива в топке такого котла происходит под давлением до 0,6÷0,7 МПа, что приводит к значительному сокращению затрат металла на тепловоспринимающие поверхности. После котла продукты сгорания поступают в газовую турбину, на валу которой находятся воздушный компрессор и электрогенератор. Пар из котла поступает в турбину с другим электрогенератором.

Термодинамическая эффективность комбинированного парогазового цикла с высоконапорным котлом, газовой и пароводяной турбинами показана на рис. 18.3. На Т, s-диаграмме: площади 1-23-4-1 — работа газовой ступени Lг, площадь cdefabc — работа паровой ступени Lп;- 1-5-6-7-1 —потеря теплоты с уходящими газами cbghc — потеря теплоты в конденсаторе. Газовая ступень частично надстраивается над паровой ступенью, что приводит к значительному увеличению термического КПД установки.

Находящийся в эксплуатации высоконапорный котел, разработанный НПО ЦКТИ, имеет производительность 62,5 кг/с. Котел водотрубный, с принудительной циркуляцией. Давление пара 14 МПа, температура перегретого пара 545°С. Топливо — газ (мазут), сжигается с объемной плотностью тепловыделения около 4 МВт/м3. Выходящие из котла продукты сгорания при температуре до 775°С и давлении до 0,7 МПа расширяются в газовой турбине до давления, близкого к атмосферному. Отработавшие газы при температуре 460°С поступают в экономайзер, за которым уходящие газы имеют температуру около 120°С.

Принципиальная тепловая схема ПГУ с ВНППУ мощностью 200 МВт показана на рис. 18.4 установка включает паровую турбину К-160-130 и газовую турбину ГТ-35/44-770. Из компрессора воздух поступает в топку ВНППУ, куда подается и топливо. Высоконапорные газы после пароперегревателя при температуре 770°С поступают в газовую турбину, а затем в экономайзер. В схеме предусмотрена дополнительная камера сгорания, обеспечивающая номинальную температуру газов перед ГТУ при изменении нагрузки. В комбинированных ПГУ удельный расход топлива на 4÷6 % меньше, чем в обычных паротурбинных, снижаются также капиталовложения.

На рис. 18.5 показана принципиальная схема низконапорной паропроизводящей установки ННППУ со сбросом в топку котла отработавших газов газовой турбины. В современных газовых турбинах по условиям работы металла начальная температура газов не должна превышать 750÷800°С. В связи с этим, чтобы снизить температуру газов перед газовой турбиной, избыток воздуха после камеры сгорания составляет α=3÷4. После газовой турбины сбрасываемые в котел газы при температуре 500оС содержат 16 % кислорода, который используется для сжигания топлива в котле. В рассматриваемой схеме воздухоподогреватель отсутствует. Имеются установки с ННППУ и с воздухоподогревателем. Снижение температуры уходящих газов достигается подачей в котел части относительно холодной воды, минуя регенеративные подогреватели. В такой парогазовой установке достигается снижение удельного расхода топлива на 3÷4 %.

18.2.2 Котлы непрямого действия и с неводяными теплоносителями

Появление котлов непрямого действия было связано со стремлением повысить надежность испарительных поверхностей нагрева при работе на недостаточно очищенной питательной воде. Примером котла с непрямым испарением воды является двухконтурный водо-водяной котел. Его принципиальная схема показана на рис. 18.6. В топочной камере размещены испарительные поверхности первичного контура, заполненные конденсатом, что обеспечивает работу контура без накипи. Образующийся в первичном контуре пар высокого давления направляется в барабан-испаритель, в котором испаряет воду, поступающую в барабан из экономайзера. Конденсирующийся пар первичного контура вновь поступает в испарительную поверхность, а образующийся в барабане-испарителе вторичный пар направляется в пароперегреватель и затем к потребителю. При работе такого двухконтурного водо-водяного котла примеси, содержащиеся в питательной воде, откладываются на поверхностях труб вторичного испарительного контура, что приводит к существенному уменьшению теплоотдачи. Для возможности передачи теплоты от первичного контура ко вторичному поддерживается разность давлений между ними 3÷5 МПа. Наличие двух пароводяных контуров и двух барабанов определяет большие затраты металла и более высокую стоимость такого котла по сравнению с современными.

Для выработки водяного пара на органическом топливе такие двухконтурные водо-водяные котлы распространения не получили. Однако их принцип работы использован в рассматриваемых далее специальных котлах с неводяными теплоносителями, а также в парогенераторах атомных электростанций.

Применение неводяных теплоносителей связано в большинстве случаев со стремлением иметь рабочее вещество с высокой температурой кипения при низком давлении. Такими теплоносителями, используемыми для котлов, в частности, являются органические вещества типа дифенила, расплавленные натрий и калий, их соли и др.

При относительно небольших давлениях для высококипящих теплоносителей (ВОТ) температура кипения существенно возрастает. Так, например, температура кипения ВОТ при давлении 0,7 МПа равна 370 оС.

Не водяные теплоносители используются в первом контуре двух-и трехконтурных котлов с целью выработки водяного пара при низком давлении в первичном контуре. Жидкометаллические теплоносители (Na, К) используют в парогенераторах атомных электростанций.

В качестве промежуточного теплоносителя для котлов некоторое применение нашел ВОТ, представляющий собой эвтектическую смесь дифенила и дифенильного эфира. Двухконтурные котлы с ВОТ используют на промышленных предприятиях для выработки технологического пара на питательной воде низкого качества при малом давлении в первичном контуре, а также для получения высокой температуры стенки поверхностей нагрева, исключающей выпадение «росы». Как видно из вышеприведенных данных, дифенильная смесь при атмосферном давлении имеет температуру кипения 258°С. Для достижения такой температуры при работе на воде давление в контуре должно быть около 0,4 МПа.

Дифенильная смесь — бесцветная жидкость с резким запахом, практически не смешивается с водой, имеет плотность, близкую к плотности воды, теплоемкость ее примерно в 1,5 раза, а теплопроводность примерно в 4 раза меньше, чем у воды. Дифенильная смесь имеет достаточную термическую стойкость до температуры 385оС, горюча, но практически невзрывоопасна и нетоксична.

На рис. 18.7 показана принципиальная схема котла с ВОТ в качестве промежуточного теплоносителя. В газотрубном котле, использующем теплоту горючих газов после обжиговой печи, испаряется ВОТ, пары которого направляются в теплообменник. В теплообменнике за счет теплоты ВОТ испаряется питательная вода с получением водяного пара, а образующийся конденсат ВОТ вновь поступает в газотрубный котел. На рисунке показаны устройства для заполнения агрегата промежуточным теплоносителем в период растопки.

Применение ВОТ при низком давлении обеспечивает температуру стенки газотрубного котла более 250°С, что исключает образование на трубках агрегата серной кислоты из отходящих газов, для которых температура точки росы высока (около 200°С).

Котлы с ВОТ используются также для промышленных предприятий с целью получения высокотемпературного теплоносителя, применяемого для ряда технологических химических производств (выпарка, перегонка и др.).

§

В промышленности находят применение передвижные котлы. От стационарных они отличаются тем, что не связаны с постоянным местом работы, поэтому монтируются в собранном виде на различных передвижных средствах — автомобилях, прицепах, санях и др. Учитывая эту особенность, передвижные котлы выполняют обычно на малую паропроизводительность. Так, установки, монтируемые на автомобилях и прицепах, имеют производительность до 0,28 кг/с при давлении пара 0,2÷0,5 МПа. В большинстве случаев производится насыщенный пар, однако имеются котлы, в которых вырабатывается и перегретый пар.

Передвижные котлы применяют в различных отраслях промышленности. Так, они широко используются на нефтепромыслах, на новостройках, в полевых условиях, в сельском хозяйстве. Передвижные котлы широко используются для санитарно-технических установок и др. Используются они также в энергопоездах. В этом случае котел монтируется на железнодорожной платформе.

В зависимости от условий передвижной котел может работать на твердом или жидком топливе или на газе. В качестве твердого топлива часто используются дрова, а в качестве жидкого — дизельное топливо, соляровое масло, мазут. Передвижные котлы работают обычно вне помещения, что определяет ряд трудностей при их эксплуатации. Их работа характеризуется низким КПД (до 50÷70%), что связано в основном с высокой температурой уходящих газов. Для передвижных котлов применяется обычно естественная тяга с использованием короткой дымовой трубы (около 1,5 м). Усиление тяги может быть достигнуто применением пароструйных сифонов. Работают котлы обычно на сырой неподготовленной воде из местных источников, что связано с ускоренным образованием в них накипи. Передвижные котлы характеризуются малым временем растопки (30÷60 мин), что объясняется их относительно небольшой теплоаккумулирующей способностью.

На практике используют различные типы передвижных котлов: жаротрубные, дымогарные и комбинированные, водотрубные вертикальные и горизонтальные с естественной и принудительной циркуляцией. На рис. 18.8 для примера показан передвижной горизонтальный дымогарный котел типа ППК-1000 (передвижной паровой котел) паропроизводительностью 0,28 кг/с (1000 кг/ч). Котел ППК-1000 смонтирован на шасси автомобильного прицепа грузоподъемностью 4 т. В цилиндрический корпус 1,расположенный на шасси, вставлена эксцентрично жаровая труба 2 диаметром 750 мм, частично футерованная кирпичом (начальная часть и выходная). За жаровой трубой расположен пучок дымогарных труб 3диаметром 51×2,5 мм. Дымогарные трубы вварены в плоские днища другого цилиндра 4, в верхней части которого предусмотрен сухопарник 5. Между жаровой трубой и дымогарными трубами установлены однорядные кипятильные трубы 6. Котел имеет пароперегреватель 7, размещенный в дымовой коробке 8. На эту коробку опирается дымовая труба 9,которая при работе котла устанавливается вертикально. Топливо (мазут) из баков 10 и 11поступает к форсунке 12,установленной в передней части конической камеры 13. Котел ППК-1000 вырабатывает пар давлением 0,5 МПа. Расход мазута составляет около 0,03 кг/с.

а — Рамзина ПК24; р=14 МПа; производительность 75 кг/с (270 т/ч); температура перегретого пара 570 °С:

1 и 2 — конвективный экономайзер; 3 — подъемные ленты труб; 4 — переходная зона; 5 — промывочно-сепарационная установка; 6 — первая ступень радиационного перегревателя; 7 — вторая ступень радиационного перегревателя; 8 — потолочные трубы; 9 — выходной конвективный перегреватель; 10 и 11 — промежуточный перегреватель; 12 — редукционно-охдадительная установка; 13 — впрыск питательной воды перед переходной зоной; 14 — впрыск питательной воды перед промывочно-сепарационной установкой; 15 — впрыск питательной воды перед выходным конвективным перегревателем; 16 — впрыск питательной воды в трубопровод;

б — Бенсона:

1 — секция экрана; 2 — пароперегреватель; 3 — переходная зона испарения; 4 — экономайзер; 5 — воздухоподогреватель; 6 — питательная вода; 7 — перегретый пар; 8— продукты сгорания;

в — Зульцера:

1 — горизонтальные секции экранов; 2 — вертикальные секции экранов; 3—переходная зона испарения; 4 — пароперегреватель; 5 — экономайзер; 6 — воздухоподогреватель; 7 — питательная вода; 8 — перегретый пар; 9 —продукты сгорания.

Рисунок 18.1 — Схемы прямоточных котлов

1 — забор воздуха; 2 — компрессор; 3 — топливо; 4 — камера сгорания; 5 —газовая турбина; 6 — выхлоп отработавших газов; 7 — электрогенератор; S —котел; 9 —паровая турбина; 10 — конденсатор; 11 — насос; 12 — подогреватель высокого давления; 13 — регенеративный подогреватель на отходящих газах (экономайзер)

Рисунок 18.2 — Принципиальная схема парогазовой установки с ВНППУ

Рисунок 18.3 — T, s – диаграмма комбинированного парогазового цикла

1 — воздушный компрессор; 2 — перепроизводящая установка; 3 — газовая турбина; 4 — экономайзер; 5 — паровая турбина; 6 — конденсатор; 7 — регенеративные подогреватели низкого давления; 8 — дополнительная камера сгорания.

Рисунок 18.4 — Принципиальная тепловая схема ПГУ ВНППУ

1 — забор воздуха; 2 — компрессор; 3 — топливо; 4 — камера сгорания; 5 — газовая турбина; 6 — выхлоп отработавших газов; 7 — электрогенератор; 8 — котел; 9 — паровая турбина; 10 — конденсатор; 11 — насос; 12 — подогреватель высокого давления; 13, 14 — экономайзеры

Рисунок 18.5 — Принципиальная схема ПГУ ННПУ со сбросом газов в котел

1 — топочная камера; 2 — испарительные поверхности нагрееа первичного контура; 3 — барабан-испаритель; 4 — экономайзер: 5 — пароперегреватель; 6— продувочная линия

Рисунок 18.6 — Двухконтурный водо-водяной котел

1 — газотрубный котел; 2 — теплообменник; 3 — барабан: 4 — сливной бак для ВОТ; 5 — насос для заполнения котла ВОТ

Рисунок 18.7 — Принципиальная схема котла с высококипящим

органическим теплоносителем

Рисунок 18.8 — Передвижной горизонтальный дымогарный котел ППК-1000

§

Пароперегреватели предназначаются для перегрева на­сыщенного пара, поступающего из испарительной системы котла, а в установках высокого давления они применяются также для дополнительного вторичного перегрева пара, частично отработавшего в цилиндре высокого давления турбины. Пароперегреватель является одним из основных теплоиспользующих элементов котла и работает в наибо­лее тяжелых условиях. С повышением параметров пара роль и значение пароперегревателя возрастают.

Металл поверхностей нагрева пароперегревателя имеет наибольшую по сравнению с другими теплоиспользующими поверхностями нагрева температуру, что обусловливается высокими температурами пара и большими удельными теп­ловыми нагрузками поверхностей нагрева.

По назначению пароперегреватели разделяют на пер­вичные, в которых перегревается пар начального давления, и промежуточные, используемые для перегрева частично отработавшего пара.

В зависимости от определяющего способа передачи теп­лоты от газов к поверхностям нагрева пароперегреватели разделяют на конвективные, радиационные и полурадиационные.

У промежуточных конвективных пароперегревателей в газоходе змеевики пароперегревателя располагают вертикально или горизонтально. Змеевики выполняют одинарными (однорядные), сдвоенными (двухрядные) и строенными (трехрядные). Для большей компактности пароперегревателя и обеспечения необходимой скорости пара в мощных котлах применяют двух- и трех­рядные змеевики.

Для вы­равнивания температуры пара по отдельным змеевикам при температуре его более 450 °С пароперегреватель раз­деляют на последовательно включенные по пару части с перемешиванием пара между ними. Перемешивание пара обеспечивается в смесительных коллекторах, к которым присоединены змеевики отдельных частей пароперегрева­теля.

Для надежной работы конвективного пароперегревателя, помимо обеспечения достаточной скорости потока пара и его рав­номерной температуры по параллельно включенным зме­евикам, необходимо осуществить наиболее рациональную схему включения пароперегревателя по ходу потока про­дуктов сгорания. В зависимости от направления движения потоков пара и продуктов сгорания различают пароперегреватели прямоточные, противоточные и со смешанным направлением потоков.

В противоточном пароперегревателе достигается наи­больший температурный напор между продуктами сгора­ния и паром, что уменьшает необходимую поверхность на­грева пароперегревателя и соответственно снижает расход на него металла. Недостатками противоточной схемы явля­ются размещение последних по ходу пара частей змеевиков в области наиболее высоких температур продуктов сгора­ния и тяжелые температурные условия работы металла труб. При прямоточном пароперегревателе температурный напор меньше, чем при противоточном, однако условия ра­боты металла труб лучше, так как части змеевиков с наи­большей температурой пара обогреваются продуктами сго­рания, охлажденными на входных участках змеевиков-

Оптимальной является смешанная схема включения па­роперегревателя, при которой большая и первая по ходу пара часть перегревателя выполняется противоточной, а за­вершение перегрева пара происходит во второй его части при параллельном токе. При этом в части змеевиков, рас­положенных в области наибольшей тепловой нагрузки паро­перегревателя, в начале газохода, будет умеренная темпе­ратура пара, а завершение перегрева пара происходит при меньшей тепловой нагрузке. Соотношение противоточной и прямоточной частей пароперегревателя выбирается из условия одинаковых температур металла в начале и конце змеевика прямоточной части пароперегревателя.

При высоких параметрах пара возникает необходимость размещения в топке радиационного или ширмового паропе­регревателя. Радиационный пароперегреватель барабан­ных котлов обычно устанавливают на потолке топки, а если этой поверхности недостаточно — и на вертикальных ее стенках по всей их высоте. Обычно размещают паропере­греватель на стенках, на которых установлены горелки чаще на фронтовой стенке.

Радиационные пароперегреватели работают с больши­ми тепловыми нагрузками, поэтому температура металла их труб выше, чем у конвективных пароперегревателей и превышает температуру пара на 100—150 °С. В связи с этим радиационные пароперегреватели обычно применя­ют для частичного перегрева пара, завершение которого осуществляется в конвективном пароперегревателе. На­дежное охлаждение труб достигается применением высокой скорости пара (до 30 м/с).

Преимуществами радиационных пароперегревателей являются меньшая, чем у конвективных пароперегревате­лей, удельная площадь поверхности нагрева и отсутствие сопротивлений по газовой стороне.

Ширмовый пароперегреватель представляет собой сис­тему трубок, образующих плоские плотные пакеты с вход­ными и выходными коллекторами. Ширмы размещают вертикально или горизонтально в верхней части топки с расстоянием между коллекторами 700—1000 мм. Горизонтальные ширмы применяются преимущественно в прямоточных котлах.

6.1 Компоновка пароперегревателей

Имеется большое разнообразие конструкций пароперегревателя. На рис. 6.1 показаны наиболее часто применяемые схемы и компоновки пароперегревателей.

Пароперегреватель котла среднего давления с парамет­рами пара Р = 3,90 МПа, t = 450 °С обычно конвективный с вертикальными змеевиками; он размещается за фестонов или за конвективным испарительным пучком (рис. 6.1 а).Для защиты металла выходных змеевиков от чрезмерно высокой температуры пароперегреватель выполняют по сме­шанной противоточно-прямоточной схеме.

В котлах высокого давления с параметрами пара Р= 0,98 и 13,8 МПа и t = 540 °С пароперегреватель состоит из двух частей: конвективной и ширмовый (рис. 6.1 б). Ширмовый пароперегреватель с вертикальными панелями размещен в верхней части топки перед фестоном.

Конвективный пароперегреватель с вертикальными зме­евиками размещают в горизонтальном газоходе за фесто­ном. Обе части пароперегревателя включают по пару последовательно. При этом первым по ходу пара включают ширмовый пароперегреватель, работающий в более тяже­лых условиях.

В котлах высокого давления с промежуточным перегре­вом пара (13,7 МПа, 565/570 °С) имеются два самостоя­тельных пароперегревателя — первичный и промежуточный (рис. 6.1 г). Конструкция и компоновка первичного паро­перегревателя такие же, как и для котлов с параметрами пара Р = 9,8 и 13,8 МПа и t = 540° С, описанных выше.

6.2 Регулирование температуры пара

В процессе эксплуатации котла температура перегрето­го пара может меняться вследствие изменения удельного тепловосприятия пароперегревателя. Наибольшее влияние на температуру перегретого пара оказывает нагрузка кот­ла. Температура перегрева пара зависит также от темпера­туры питательной воды, избытка воздуха в топке, шлакования и загрязнения экранов и пароперегревателя, от характеристик топлива. В радиационном пароперегревате­ле с повышением нагрузки температура перегрева пара снижается, так как удельное тепловосприятие пароперегре­вателя возрастает в топке медленнее, чем увеличивается нагрузка. В конвективном пароперегревателе количество проходящих через него продуктов сгорания увеличивается почти пропорционально увеличению нагрузки, одновремен­но повышается и температура на выходе из топки. Соот­ветственно увеличиваются коэффициент теплоотдачи в па­роперегревателе и температурный напор. В результате удельное тепловосприятие пароперегревателя растет быст­рее, чем нагрузка котла, и температура перегрева пара взрастает.

В барабанных котлах при снижении температуры пита­тельной воды расход топлива и продуктов сгорания увели­чивается, что повышает скорость газов в пароперегревате­лях и увеличивает коэффициент теплоотдачи. Следова­тельно, при неизменном расходе пара повышается темпера­тура его перегрева. В прямоточных котлах снижение тем­пературы питательной воды приводит к уменьшению поверхности нагрева перегревательной зоны и температура перегрева пара снижается.

Рост избытка воздуха в топке уменьшает долю тепло­ты, передаваемой радиацией в топки, и увеличивает объем и скорость продуктов сгорания, проходящих через паропе­регреватель. В результате повышается температура пере­грева пара. Повышение влажности твердого топлива при неизменной паропроизводительности котла увеличивает объем продуктов сгорания, проходящих через пароперегре­ватель, и его удельное тепловосприятие, за счет чего также повышается температура перегрева пара. Шлакование экранов в топке вызывает повышение температуры продук­тов сгорания перед пароперегревателем и температуры пе­регрева пара. Загрязнение пароперегревателя вызывает ее снижение.

В прямоточных котлах поверхность нагрева пароперегревательной зоны меняется и зависит от эксплуатацион­ных факторов. Поддержанием соотношения расхода воды и топлива можно обеспечить неизменную температуру пе­регрева пара. Вместе с тем небольшое изменение расхода топлива вызывает существенное изменение температуры пара вследствие малой аккумулирующей способности котла.

При паро­вом регулировании температура пара поддерживается по­стоянной путем изменения степени его охлаждения или изменения энтальпии пара, поступающего в пароперегре­ватель или в отдельные его ступени. При газовом регули­ровании осуществляется воздействие на тепловосприятие пароперегревателя за счет изменения передачи теплоты от газов к его поверхности нагрева.

а — 3,9 МПа, 440 °С; б — 9,8 МПа, 540 °С; в — 13,8 МПа, 560 «С; г — 25 МПа, 560 °С: 1 — конвективный первичный пароперегреватель; 2 — ширмовый первичный пароперегреватель; 3 — потолочный пароперегреватель; 4 — конвективный промежуточный пароперегреватель; 5 — ширмовый промежуточный пароперегреватель; 6 — экраны

Рисунок 6.1 — Схемы пароперегревателей котлов с различными параметрами пара

а — противоточное; б — прямоточное; в и г – смешанное

Рисунок 6.2 — Схемы движения пара и продуктов сгорания в конвективных пароперегревателях

1 — змеевики; 2 — подвесные планки; 3 — верхние изгибы труб; 4 — потолочные трубы; 5 — дистанциирующие гребенки; 6 — опорные планки.

Рисунок 6.3 — Крепление вертикального конвективного пароперегревателя

1 — первая ступень пароперегревателя; 2 — барабан; 3 и 6 — подвесные трубы; 4 и 8 — промежуточные коллекторы; 5 — выходная камера; 7 — вторая ступень пароперегревателя; 9 — коллектор подвесных труб.

Рисунок 6.4 — Конвективный пароперегреватель с горизонтальными змеевиками

а — клинообразная форма низа ширмы; б – горизонтальная форма низа ширмы;

1 – труба ширмы; 2 — камеры (коллекторы); 3обвязочные трубы; 4хомут

Рисунок 6.5 — Вертикальный ширмовый пароперегреватель

1 — радиационный пароперегреватель; 2 — конвективный пароперегреватель

Рисунок 6.6 — Зависимость температуры перегрева пара от нагрузки котла

(без регуляторов температуры перегрева пара)

а — за пароперегревателем; б — в рассечку; в — на выходе насыщенного пара; г — допустимая температура металла труб; 1 — пароохладитель

Рисунок 6.7 — Изменение температуры пара по тракту пароперегревателя в

зависимости от размещения пароохладителя

1 — входной коллектор охлаждающей воды; 2 — выходной коллектор воды; 3 — входная камера; 4 — трубы, охлаждаемые водой; 5 — корпус пароохладителя

Рисунок 6.8- Поверхностный пароохладитель

а — параллельная; б — последовательная;

1 — барабан; 2 — пароохладитель; 3 – отвод охлаждающей воды; 4 — экономайзер

Рисунок 6.9 — Схемы вклю­чения поверхностного пароохладителя

§

7.1 Место установки пароохладителей

В отече­ственных котлах применяют паровое регулирование тем­пературы первичного пара, которое осуществляют в по­верхностных пароохладителях или впрыском в поток пере­гретого пара чистого конденсата.

Изменение температу­ры пара по тракту пароперегревателя при различных схе­мах включения пароохладителя показано на рис. 7.1. Установку пароохладителя на выходе пара из пароперегревателя не применяют, так как пароперегреватель при этом остается не защищенным от чрезмерно высокой температу­ры.

Установка пароохладителя на стороне насыщенного пара определяет значительное запаздывание системы регу­лирования температуры пара и в настоящее время приме­няется в агрегатах малой мощности. Установка пароохла­дителя в рассечку обеспечивает меньшую инерционность регулирования вследствие сокращения длины пути пара после регулятора и времени, необходимого для изменения количества теплоты, аккумулированной в пароперегревате­ле. В результате регулирование конечной температуры па­ра достигается почти в 2 раза быстрее, чем при установке пароохладителя на стороне насыщенного пара. При уста­новке пароохладителя в рассечку происходит снижение температуры частично перегретого пара и соответственно его конечной температуры.

7.2 Схема включения поверхностных пароохладителей

Поверхностный пароохладитель представляет собой трубчатый теплообменник внутри труб протекает охлаж­дающая вода, снаружи трубы омываются охлаждаемым паром. В качестве охлаждающей воды используется обычно питательная вода. По потоку питательной |воды пароохладитель может быть включен параллельно или последовательно с экономайзером. При параллельной схеме включения пароохладителя с увеличением количе­ства проходящей через него воды ухудшаются условия охлаждения экономайзера и уменьшается использование в нем теплоты отходящих газов. В современных котлах применяется включение пароохладителя последовательно с экономайзером рис. 4.

Впрыскивающий пароохладитель представляет собой участок паропровода перегретого пара, в котором располо­жена перфорированная труба с отверстиями диаметром 3—5 мм, через которые в пар подается распыленный кон­денсат. Для предотвращения попадания на стенку паро­провода относительно холодных струй конденсата в месте установки распылителя в паропроводе имеется защитная рубашка с зазором между ней и па­ропроводом. Обычно устанавливается ряд параллельных по ширине паропере­гревателя и последовательных по ходу потока пара впрыс­кивающих пароохладителей. Схема регулирования темпе­ратуры свежего пара барабанного котла впрыскивающими пароохладителями показана на рис. 7.2.

Первые по ходу пара пароохладители предназначаются для предохранения расположенных за ними поверхностей нагрева от чрезмерного повышения температуры. Послед­ний по ходу пара пароохладитель поддерживает постоянную температуру пара. Для получения собственного конденсата предусматривается установка специального конденсатора, в котором за счет охлаждения пара частью питательной воды осуществляется получение конденсата, необходимого для впрыска.

Количество пара, проходящего через ступень паропере­гревателя после впрыскивающего пароохладителя, увели­чивается и становится равным, кг/ч

Сжигание газа в топках котлов , (7.1)

где Сжигание газа в топках котлов количество пара до пароохлаждения, кг/ч;

Сжигание газа в топках котлов количество воды, поступающей в пароохладитель, кг/ч.

Общее количество конденсата, поступающего в пароох­ладитель, кг/ч, определяется из условий обеспечения сниже­ния энтальпии пара при работе котла с полной нагрузкой и определяется по формуле

Сжигание газа в топках котлов , (7.2)

где iПП, iК — энтальпии перегретого пара и конденсата, поступающего в пароохладитель, кДж/кг.

Следует учитывать, что по мере приближения пароохла­дителя к выходу пара из пароперегревателя ухудшаются температурные условия работы металла паропровода в ме­сте впрыска. Это также является одной из причин примене­ния двух-трех пароохладителей по тракту пара, что позво­ляет более тонко регулировать температуру пара и более надежно защищать отдельные ступени пароперегревателя.

1 — радиационный пароперегреватель; 2 — конвективный пароперегреватель

Рисунок 7.1 — Зависимость температуры перегрева пара от нагрузки котла

(без регуляторов температуры перегрева пара)

1 — барабан; 2 — гидрозатвор; 3 — пароохладитель; 4 — емкость конденсатора; 5 — коллектор с вспрыскивающим устройством; 6 — экономайзер

Рисунок 7.2 — Схема регулирования температуры пара впрыском собственного конденсата

а — пропуском части продуктов сгорания через холостой газоход; б — распределением продуктов сгорания по газоходам пароперегревателя; 1 — секции пароперегревателя; 2 — экономайзеры; 3 — основной дымосос; 4 — регулирующий дымосос; 5 — регулирующий шибер (воздухоподогреватели не показаны)

Рисунок 7.3 — Схемы газового регулирования температуры пара

§

8.1 Экономайзеры

Экономайзеры соответственно назначению условно делят на два типа: некипящие и кипящие. В экономайзере воспринимается 10 — 20 % теплоты топлива.

Не кипящие экономайзеры предназначены для подогрева питательной воды только до температуры насыщения и устанавливаются индивидуально на котел или на группу котлов низкого давления (до р =2,4 МПа) и малой мощности и могут отключаться от котлов по газовому и водяному тракту. Их выполняют в виде пакета гладких, стальных или чугунных ребристых труб с оребрением с газовой стороны. Длина оребренной чугунной трубы экономайзера конструкции ВТИ составляет 1,5; 2 или 3 м, диаметр трубы 76 х 8 мм, наружные ребра квадратные размером 150 х 150 мм. Число труб в пакете в горизонтальной плоскости определяется, исходя из скорости продуктов сгорания, обычно равной 6 — 9 м/с; число горизонтальных рядов труб экономайзера определяется требуемой поверхностью нагрева. При скорости продуктов сгорания 8 м/с k ≈ 20 Вт/(м2·К). Температурный напор в не кипящем экономайзере определяется как средний логарифмический.

Кипящие экономайзеры в современных котлах любого давления устанавливают индивидуально к каждому из них. Экономайзеры не отключаются по водяному и газовому трактам от остальных элементов котла.

В целях интенсификации теплообмена экономайзер выполняют из трубок малого диаметра dH=28 — 38 мм при толщине стенки 2,5 — 3,5 мм. Концы змеевиков экономайзера объединяют коллекторами, вынесенными из области газового обогрева. В мощных котлах с целью уменьшения количества трубок, проходящих через обмуровку экономайзера, змеевики объединяют в соединительных патрубках, которые пропускаются через обмуровку к коллекторам. Иногда коллекторы, объединяющие змеевики, размещают в газоходе, где расположен экономайзер, и одновременно они служат также для его опоры.

Трубки экономайзера обычно располагают в шахматном порядке, что обеспечивает большую эффективность теплообмена примерно на 25 % по сравнению с теплообменом при коридорном расположении труб и соответственное уменьшение габаритов экономайзера. Стальной гладкотрубный экономайзер с параллельным включением ряда змеевиков изображен на рис. 8.1. В целях уменьшения габаритов, занимаемых экономайзером, в котлах большой мощности увеличивают число рядов параллельно включенных змеевиков, предусматривая два входных и два выходных коллектора, расположенных на противоположных стенках конвективной шахты. Встречные змеевики смещены по глубине газохода с таким расчетом, чтобы было выдержано оптимальное значение отношения S2/du, равное 1,25.

В другой конструкции малый продольный шаг труб достигается лирообразным изгибом труб. Крепление коллекторов экономайзера осуществляется путем их установки на опорных или подвесных конструкциях. К коллекторам змеевики присоединяют вальцовкой или сваркой через промежуточные штуцера (рис. 8.2). Выходной коллектор экономайзера присоединяют к барабану котла несколькими водо-перепускными трубами, в которых обеспечивается восходящий поток с целью свободного выхода с водой газов и образовавшегося в экономайзере пара в барабан. Для удобства очистки поверхностей нагрева от наружных загрязнений и его ремонта экономайзер разделяют на пакеты высотой до 1 м. Разрывы между пакетами должны быть 550—600 мм, а между пакетами экономайзера и воздушным подогревателем — не менее 800 мм.

Змеевики экономайзера располагают перпендикулярно и параллельно фронту котла (рис. 8.3). В первом случае длина змеевика невелика, что облегчает их крепление. Во втором случае резко уменьшается число параллельно включенных змеевиков, но усложняется их крепление. В котлах небольшой мощности применяют одностороннее расположение коллекторов. В котлах с развитым фронтом экономайзеры выполняют двусторонними, симметричными, с расположением коллекторов с двух боковых сторон конвективной шахты.

Скорость воды в экономайзере принимают, исходя из условий предотвращения в них расслоения пароводяной смеси и кислородной коррозии. При малой скорости воды остающийся в ней кислород задерживается в местах шероховатости верхней образующей трубок и вызывает язвенную коррозию, которая распространяется на большую толщину стенки трубки вплоть до образования свищей. Расслоение пароводяной смеси при малой скорости потока вызывает ухудшение условий их охлаждения и перегрев металла трубок.

Массовая скорость воды в экономайзере при восходящем его потоке должна быть выбрана с учетом характеристики рабочей среды и условий теплообмена. Например, для конвективных некипящих элементов массовая скорость воды должна составлять 500—600 кг/(м2-с). При указанных в этой главе массовых скоростях коэффициент теплоотдачи к воде a2=3000 — 4000 Вт/(м2·К), что обеспечивает надежное охлаждение трубок. Отдельные ступени экономайзера выполняют как самостоятельные элементы, и для уменьшения тепловой и гидравлической разверки между трубками ступеней целесообразно их секционировать. Соединительные трубки между ступенями экономайзера используют для перемешивания и переброса воды перед поступлением ее в кипящую ступень. Паросодержание на выходе воды из кипящей ступени экономайзера не должно быть более 15—20 %. Скорость газов принимают до 12 м/с при работе котла на твердом топливе и до 16—20 м/с — на газе и мазуте.

В целях повышения эффективности теплообмена и компактности экономайзеров мощных котлов к трубкам приваривают плавники или экономайзеры выполняют из плавниковых трубок (рис. 8.4); при этом объем, занимаемый экономайзером, уменьшается на 20—25 %

Конструкцию экономайзера характеризуют следующие показатели:

— удельный объем, занимаемый экономайзером, V/Q, м3/МВт, — габаритная характеристика;

— удельный расход металла экономайзера G/Q, кг/МВт,— массовая характеристика;

— удельная стоимость экономайзера A/Q, руб/МВт, — стоимостная характеристика.

Зависимость этих характеристик от удельного расхода электроэнергии на тягу дает возможность выявить оптимальный диаметр трубок экономайзера (рис. 8.5). Как видно из графика, с уменьшением диаметра трубок значительно улучшаются все характеристики экономайзера. Минимальное значение применяемого диаметра трубок определяется условиями изготовления экономайзера.

8.2 Воздухоподогреватели

Для подогрева воздуха в котлах применяют два типа воздухоподогревателей: рекуперативные и регенеративные. В рекуперативном воздухоподогревателе теплота продуктов сгорания передается непрерывно воздуху через стенку, разделяющую теплообменивающиеся среды. В регенеративном воздухоподогревателе теплота передается металлической насадкой, которая периодически нагревается продуктами сгорания, а затем отдает аккумулированную в ней теплоту нагреваемому воздуху. Воздухоподогреватели воспринимают 7—15 % теплоты топлива, отдаваемого продуктами сгорания в котле.

Преимущественно применяются трубчатые рекуперативные воздухоподогреватели с вертикальным расположением труб. Скорость газов обычно 10—14 м/с, воздуха 6—8 м/с. Продукты сгорания проходят внутри труб, воздух омывает их снаружи поперечным потоком (рис. 8.6). Воздухоподогреватели изготовляют из стальных труб с наружным диаметром 30—40 мм при толщине стенки 1,2—1,5 мм. Концы труб приваривают к трубным доскам и располагают в шахматном порядке. Для получения необходимой скорости перекрестного тока воздуха трубную систему по высоте разделяют промежуточными досками на несколько ходов. Для перепуска воздуха из одного хода в другой установлены короба. Воздухоподогреватель снаружи имеет стальную обшивку и опирается нижней трубной доской на раму, связанную с каркасом котла. Трубная система при нагревании расширяется вверх, и верхняя трубная доска соединяется с газоходом линзовым или набивным компенсатором, что обеспечивает свободное термическое расширение воздухоподогревателя без присосов воздуха (рис. 8.7). Воздухоподогреватель выполняют из ряда секций, удобных для монтажа и транспортировки, которые устанавливают рядом, заполняя все сечение газохода. При сжигании многозольного топлива для предохранения верхних концов труб от абразивного износа в них устанавливают трубки длиной 150-200 мм. При температуре продуктов сгорания более 500°С верхние трубные доски покрывают теплоизоляционной массой. Применяют однопоточную и двухпоточную схемы подвода воздуха в воздухоподогреватель. В воздухоподогревателях котлов малой и средней мощности применяют однопоточную схему подвода воздуха по его широкой стороне. В котлах большой мощности высота одного воздушного хода достигает больших размеров, число ходов воздуха в каждой ступени воздухоподогревателя уменьшается. Двухпоточная схема подвода воздуха позволяет уменьшить высоту хода и увеличить число ходов при меньшем в них числе рядов трубок и соответственно уменьшить сопротивления по ходу воздуха и повысить температурный напор в воздухоподогревателе. Применение двухпоточной схемы подвода воздуха и труб малого диаметра с малым шагом позволяет создать достаточно компактные воздухоподогреватели.

Трубчатые воздухоподогреватели просты по конструкции, надежны в работе и более плотны, чем другие системы воздухоподогревателей. Недостатком трубчатых воздухоподогревателей являются относительно большие удельный расход металла G/Q и удельный объем V/Q. Различные схемы компоновки трубчатых воздухоподогревателей показаны на рис. 8.8.

При наличии низкотемпературной и высокотемпературной ступеней воздухоподогревателя каждая ступень рассчитывается отдельно. Для регенеративных вращающихся воздухоподогревателей в расчет вводится двусторонняя поверхность нагрева набивки.

Регенеративный воздухоподогревательпредставляет собой вращающийся барабан с набивкой из тонких стальных гофрированных и плоских листов, образующих каналы малого эквивалентного диаметра (dэ=4-н5 мм) для прохода воздуха и продуктов сгорания. Набивкой, которая служит поверхностью теплообмена, заполняется пустотелый ротор, разделенный сплошными перегородками на изолированные друг от друга секторы (рис. 8.9).

Ротор медленно (с частотой вращения 2—6 об/мин) вращается в неподвижном корпусе. Корпус разделен на две части секторными плитами. В одну из них через горловину поступают продукты сгорания, в другую — воздух. Движение потока газа и воздуха раздельное и непрерывное. При непрерывном вращении ротора его металлическая набивка попеременно проходит через эти потоки. Сначала теплота газов аккумулируется, а затем отдается воздуху. Этот процесс повторяется, и в итоге организуется непрерывный нагрев воздуха. Взаимное движение потоков продуктов сгорания и воздуха противоточное. Площадь поверхности нагрева 1 м3 набивки составляет 200—250 м2. Длительность пребывания набивки в газовом и воздушном потоках менее 30 с. Толщина листов набивки 0,6—1 мм. Мощность электродвигателя для привода ротора воздухоподогревателя 3—5 кВт. Регенеративные воздухоподогреватели указанной конструкции отличаются малым значением величин V/Q, G/Q и A/Q.

Недостатками регенеративных воздухоподогревателей являются повышенный переток воздуха в газовую среду (до 10 %), что увеличивает потерю с уходящими газами, а также наличие вращающихся элементов и системы водяного охлаждения вала ротора и подшипников. Вследствие коробления набивки подогрев воздуха в регенеративных воздухоподогревателях ограничен температурой 300°С. При необходимости более высокого подогрева воздуха воздухоподогреватель выполняют комбинированным: из регенеративного воздухоподогревателя с подогревом в нем воздуха до 250—300 °С и трубчатого, в котором завершается подогрев воздуха до более высокой температуры (рис. 8.10).

Для подогрева воздуха до 400—420 °С и температурном напоре на горячем конце воздухоподогревателя Δt=40°С при отношении водяных эквивалентов газа и воздуха Сжигание газа в топках котлов= 0,8 температура уходящих газов должна быть не меньше 140—150°С, что экономически невыгодно. Для ее снижения необходима двухступенчатая компоновка воздухоподогревателя, как показано на схеме рис. 8.10. Влияние подогрева воздуха на температуру уходящих газов при одноступенчатой компоновке воздухоподогревателя показано на рис. 21.11.

Рисунок 8.1- Экономайзер с параллельным включением змеевиков: 1 — входная камера; 2 — выходная камера; 3 — змеевики экономайзера

Рисунок 8.2 — Присоединение змеевиков к коллекторам экономайзера:

а -с использованием развилок; б — с разделением на два пучка; в — при двух параллельных коллекторах; г и д — с использованием секционных камер

Рисунок 8.3 — Компоновки экономайзера:

а — расположение змеевиков перпендикулярно фронту; б — расположение змеевиков параллельно фронту; в и г — двусторонне-параллельное фронту расположение змеевиков; д — защита труб от износа; 1 — барабан; 2 — водоперепускные трубы; 3 — экономайзер; 4 — входные коллекторы; 5 — перекидные трубы

Рисунок 8.

4 — Плавниковые и с приварными ребрами трубы:

а — с приварными ребрами; б — плавниковые трубы

Рисунок 8.5 — Конструктивные характеристики экономайзера и их зависимость от диаметра труб

Рисунок 8.6 — Трубчатый воздухоподогреватель:

1 — стальные трубы 40х1,5 мм; 2 и 6 — верхняя и нижняя трубные доски толщиной 20 — 25 мм; 3 — компенсатор; 4 — воздухоперепускной короб; 5 — промежуточная трубная доска; 7 и в — опорные рамы и колонны

Рисунок 8.7 — Компенсаторы тепловых расширений воздухоподогревателя:

а — линзовый компенсатор; б — набивной компенсатор; 1 — трубная доска; 2 — компенсатор расширения труб относительно короба; 3 — компенсатор расширения короба относительно каркаса; 4 — каркас короба; 5 — камера с крошкой шамота и песка; 6 — лист уплотнения.

Рисунок 8.8 — Схемы компоновки воздухоподогревателей:

а — двухпоточный по воздуху и двухсторонний его подвод; б — двухпоточный при одностороннем подводе воздуха; в — многопоточный по воздуху; 1 — вход холодного воздуха; 2 — выход горячего воздуха

Рисунок 8

.9 — Регенеративный воздухоподогреватель:

1 — вал ротора; 2 — подшипники; 3 — электродвигатель; 4 — набивка: 5 — наружный кожух; 6 и 7- радиальное и периферийное уплотнение; 8 — утечка воздуха

Рисунок 8.10 — Схема установки комбинированного рекуперативного и регенеративного воздухоподогревателя:

1 — топка; 2 — экраны; 3 — фестон; 4 — ширмовый пароперегреватель; 5 — конвективный пароперегреватель; 6 — экономайзер I ступени; 7 — то же II ступени; в — регенеративный воздухоподогреватель I ступени; 9 — рекуперативный трубчатый воздухоподогреватель II ступени

Рисунок 8.

11 — Влияние подогрева воздуха на температуру уходящих газов при различных отношениях водяных эквивалентов Ψ

Температура горения

В теплотехнике различаются следующие температуры горения газов: жаропроизводительность, калориметрическую, теоретическую и действительную (расчетную). Жаропроизводительность tx — максимальная температура продуктов полного сгорания газа в адиабатических условиях с коэффициентом избытка воздуха а = 1,0 и при температуре газа и воздуха, равной 0°C:

tx = Qh /(IVcv) (8.11)

где QH — низшая теплота сгорания газа, кДж/м3; IVcp — сумма произведений объемов диоксида углерода, водяного пара и азота, образовавшихся при сгорании 1 м3 газа (м33), и их средних объемных теплоемкостей при постоянном давлении в пределах температур от 0°С до tx (кДж/(м3*°С).

В силу непостоянства теплоемкости газов жаропроизводительность определяется методом последовательных приближений. В качестве начального параметра берется ее значение для природного газа (=2000°С), при а = 1,0 определяются объемы компонентов продуктов сгорания, по табл. 8.3 находится их средняя теплоемкость и затем по формуле (8.11) считается жаропроизводительность газа. Если в результате подсчета она окажется ниже или выше принятой, то задается другая температура и расчет повторяется. Жаропроизводительность распространенных простых и сложных газов при их горении в сухом воздухе приведена в табл. 8.5. При сжигании газа в атмосферном воздухе, содержащем около 1 вес. % влаги, жаропроизводительность снижается на 25-30°С.

Калориметрическая температура горения tK — температура, определяемая без учета диссоциации водяных паров и диоксида углерода, но с учетом фактической начальной температуры газа и воздуха. Она отличается от жаропроизводительности tx тем, что температура газа и воздуха, а также коэффициент избытка воздуха а принимаются по их действительным значениям. Определить tK можно по формуле:

tк = (Qн qфиз)/(ΣVcp) (8.12)

где qфиз — теплосодержание (физическая теплота) газа и воздуха, отсчитываемое от 0°С, кДж/м3.

Природные и сжиженные углеводородные газы перед сжиганием обычно не нагревают, и их объем по сравнению с объемом воздуха, идущего на горение, невелик.

Таблица 8.3. Средняя объемная теплоемкость газов, кДж/(м3•°С)

Температура, °С

CO2

N2

O2COCH4H2

H2O
(водяные пары)

воздух

сухой

влажный
на 1 м3 сухого газ
а

0

1,5981

1,2970

1,3087

1,3062

1,5708

1,2852

1,4990

1,2991

1,3230

100

1,7186

1,2991

1,3209

1,3062

1,6590

1,2978

1,5103

1,3045

1,3285

200

1,8018

1,3045

1,3398

1,3146

1,7724

1,3020

1,5267

1,3142

1,3360

300

1,8770

1,3112

1,3608

1,3230

1,8984

1,3062

1,5473

1,3217

1,3465

400

1,9858

1,3213

1,3822

1,3356

2,0286

1,3104

1,5704

1,3335

1,3587

500

2,0030

1,3327

1,4024

1,3482

2,1504

1,3104

1,5943

1,3469

1,3787

600

2,0559

1,3453

1,4217

1,3650

2,2764

1,3146

1,6195

1,3612

1,3873

700

2,1034

1,3587

1,3549

1,3776

2,3898

1,3188

1,6464

1,3755

1,4020

800

2,1462

1,3717

1,4549

1,3944

2,5032

1,3230

1,6737

1,3889

1,4158

900

2,1857

1,3857

1,4692

1,4070

2,6040

1,3314

1,7010

1,4020

1,4293

1000

2,2210

1,3965

1,4822

1,4196

2,7048

1,3356

1,7283

1,4141

1,4419

1100

2,2525

1,4087

1,4902

1,4322

2,7930

1,3398

1,7556

1,4263

1,4545

1200

2,2819

1,4196

1,5063

1,4448

2,8812

1,3482

1,7825

1,4372

1,4658

1300

2,3079

1,4305

1,5154

1,4532

1,3566

1,8085

1,4482

1,4771

1400

2,3323

1,4406

1,5250

1,4658

1,3650

1,8341

1,4582

1,4876

1500

2,3545

1,4503

1,5343

1,4742

1,3818

1,8585

1,4675

1,4973

1600

2,3751

1,4587

1,5427

1,8824

1,4763

1,5065

1700

2,3944

1,4671

1,5511

1,9055

1,4843

1,5149

1800

2,4125

1,4746

1,5590

1,9278

1,4918

1,5225

1900

2,4289

1,4822

1,5666

1,9698

1,4994

1,5305

2000

2,4494

1,4889

1,5737

1,5078

1,9694

1,5376

1,5376

2100

2,4591

1,4952

1,5809

1,9891

2200

2,4725

1,5011

1,5943

2,0252

2300

2,4860

1,5070

1,5943

2,0252

2400

2,4977

1,5166

1,6002

2,0389

2500

2,5091

1,5175

1,6045

2,0593

Поэтому при определении калориметрической температуры теплосодержание газов можно не учитывать. При сжигании газов с низкой теплотой сгорания (генераторные, доменные и др.) их теплосодержание (в особенности нагретых до сжигания) оказывает весьма существенное влияние на калориметрическую температуру.

Зависимость калориметрической температуры природного газа среднего состава в воздухе с температурой 0°С и влажностью 1% от коэффициента избытка воздуха а приведена в табл. 8.5, для СУГ при его сжигании в сухом воздухе — в табл. 8.7. Данными табл. 8.5-8.7 можно с достаточной точностью руководствоваться при установлении калориметрической температуры горения других природных газов, сравнительно близких по составу, и углеводородных газов практически любого состава. При необходимости получить высокую температуру при сжигании газов с малыми коэффициентами избытка воздуха, а также для повышения КПД печей, на практике подогревают воздух, что приводит к росту калориметрической температуры (см. табл. 8.6).

Таблица 8.4. Жаропроизводительность газов в сухом воздухе

Простой газ

Жаропроизводительность, °С

Сложный газ усредненного состава

Приближенная жаропроизводительность, °С

Водород

2235

Природный газовых месторождений

2040

Оксид углерода

2370

Природный нефтяных месторождений

2080

Метан

2043

Коксовый

2120

Этан

2097

Высокотемпературной перегонки сланцев

1980

Пропан

2110

Парокислородного дутья под давлением

2050

Бутан

2118

Генераторный из жирных углей

1750

Пентан

2119

Генераторный паровоздушного дутья из тощих топлив

1670

Этилен

2284

Сжиженный (50% С3Н4 50% С4Н10)

2115

Ацетилен

2620

Водяной

2210

Таблица 8.5. Калориметрическая и теоретическая температуры горения природного газа в воздухе с t = 0°С и влажностью 1%* в зависимости от коэффициента избытка воздуха а

Коэффициент избытка воздуха а

Калориметрическая

температура горения

tк, °С

Теоретическая

температура горения

Коэффициент избытка воздуха а

Калориметрическая

температура горения

tк, °С

1,0

2022

1920

1,33

1620

1,02

1990

1900

1,36

1600

1,03

1970

1880

1,40

1570

1,05

1940

1870

1,43

1540

1,06

1920

1860

1,46

1510

1,08

1900

1850

1,50

1470

1,10

1880

1840

1,53

1440

1,12

1850

1820

1,57

1410

1,14

1820

1790

1,61

1380

1,16

1800

1770

1,66

1350

1,18

1780

1760

1,71

1320

1,20

1760

1750

1,76

1290

1,22

1730

1,82

1260

1,25

1700

1,87

1230

1,28

1670

1,94

1200

1,30

1650

2,00

1170

>

Теоретическая температура горения tT — максимальная температура, определяемая аналогично калориметрической tK, но с поправкой на эндотермические (требующие теплоты) реакции диссоциации диоксида углерода и водяного пара, идущие с увеличением объема:

СО2 ‹–› СО 0,5О2 — 283 мДж/моль (8.13)

Н2О ‹–› Н2 0,5О2 — 242 мДж/моль (8.14)

При высоких температурах диссоциация может привести к образованию атомарного водорода, кислорода и гидроксильных групп ОН. Кроме того, при сжигании газа всегда образуется некоторое количество оксида азота. Все эти реакции эндотермичны и приводят к снижению температуры горения.

Таблица 8.6. Калориметрическая температура горения природного газа tу, °С, в зависимости от коэффициента избытка сухого воздуха и его температуры (округленные значения)

Коэффициент избытка воздуха а

Температура сухого воздуха, °С

20

100

200

300

400

500

600

700

800

0,5

1380

1430

1500

1545

1680

1680

1740

1810

1860

0,6

1610

1650

1715

1780

1840

1900

1960

2022

2150

0,7

1730

1780

1840

1915

1970

2040

2100

2200

2250

0,8

1880

1940

2022

2060

2130

2200

2260

2330

2390

0,9

1980

2030

2090

2150

2220

2290

2360

2420

2500

1,0

2050

2120

2200

2250

2320

2385

2450

2510

2560

1,2

1810

1860

1930

2000

2070

2140

2200

2280

2350

1,4

1610

1660

1740

1800

2870

1950

2030

2100

2160

1,6

1450

1510

1560

1640

1730

1800

1860

1950

2030

1,8

1320

1370

1460

1520

1590

1670

1740

1830

1920

2,0

1220

1270

1360

1420

1490

1570

1640

1720

1820

Таблица 8.7. Калориметрическая температура горения tK технического пропана в сухом воздухе с t = 0°С в зависимости от коэффициента избытка воздуха а

Коэффициент избытка воздуха а

Калориметрическая температура горения tH, °С

Коэффициент избытка воздуха а

Калориметрическая температура горения tK, °С

1,0

2110

1,45

1580

1,02

2080

1,48

1560

1,04

2050

1,50

1540

1,05

2030

1,55

1500

1,07

2022

1,60

1470

1,10

1970

1,65

1430

1,12

1950

1,70

1390

1,15

1910

1,75

1360

1,20

1840

1,80

1340

1,25

1780

1,85

1300

1,27

1750

1,90

1270

1,30

1730

1,95

1240

1,35

1670

2,00

1210

1,40

1630

2,10

1170

Теоретическая температура горения может быть определена по следующей формуле:

tT = (Qн qфиз – qдис)/(ΣVcp) (8.15)

где qduc — суммарные затраты теплоты на диссоциацию СО2 и Н2О в продуктах сгорания, кДж/ м3; IVcp — сумма произведения объема и средней теплоемкости продуктов сгорания с учетом диссоциации на 1 м3газа.

Как видно из табл. 8.8, при температуре до 1600°С степень диссоциации может не учитываться, и теоретическую температуру горения может принять равной калориметрической. При более высокой температуре степень диссоциации может существенно снижать температуру в рабочем пространстве. На практике особой необходимости в этом нет, теоретическую температуру горения необходимо определять только для высокотемпературных печей, работающих на предварительно нагретом воздухе (например, мартеновских). Для котельных установок в этом нужды нет.

Действительная (расчетная) температура продуктов сгорания td — температура, которая достигается в реальных условиях в самой горячей точке факела. Она ниже теоретической и зависит от потерь теплоты в окружающую среду, степени отдачи теплоты из зоны горения излучением, растянутости процесса горения во времени и др. Действительные усредненные температуры в топках печей и котлов определяются по тепловому балансу или приближенно по теоретической или калориметрической температуре горения в зависимости от температуры в топках с введением в них экспериментально установленных поправочных коэффициентов:

td = т (8.16)

где п — т. н. пирометрический коэффициент, укладывающийся в пределах:

  • для качественно выполненных термических и нагревательных печей с теплоизоляцией — 0,75-0,85;
  • для герметичных печей без теплоизоляции — 0,70-0,75;
  • для экранированных топок котлов — 0,60-0,75.

В практике надо знать не только приведенные выше адиабатные температуры горения, но и максимальные температуры, возникающие в пламени. Их приближенные значения обычно устанавливают экспериментально методами спектрографии. Максимальные температуры, возникающие в свободном пламени на расстоянии 5-10 мм от вершины конусного фронта горения, приведены в табл. 8.9. Анализ приведенных данных показывает, что максимальные температуры в пламени меньше жаропроизводительности (за счет затрат тепла на диссоциацию Н2О и СО2 и отвода теплоты из пламенной зоны).

Про анемометры:  Как установить датчик температуры на 402 двигатель
Оцените статью
Анемометры