Анемометр testo 417
Анемометр Testo 417 с крыльчаткой диаметром 100 мм предназначен для измерения скорости, температуры, объемного расхода и направления воздушного потока (приток / вытяжка). Скорость воздушных потоков измеряется в диапазоне от 0,3 до 20,0 м/с, температура воздуха от 0 до 50°С. Функция усреднения по времени и количеству замеров позволяет получить усредненное значение расхода. Дополнительный комплект с воронкой обеспечивает эффективные измерения на вентиляционных решетках, круглых потолочных диффузорах и клапанах воздуховодов. Видео с описанием возможностей Testo 417 можно найти ниже.
Принцип действия Testo 417 при измерении скорости основан на тахометрическом принципе преобразования скорости воздушного потока в частоту электрического сигнала с помощью крыльчатки, угловая скорость вращения которой линейно зависит от скорости измеряемого воздушного потока. Температура у Testo 417 измеряется с помощью встроенного термопреобразователя сопротивления. Из дополнительных функций Testo 417 можно выделить подсветку дисплея, авто выключение, отображение мин. / макс. значений и функцию HOLD для фиксации текущего параметра.
Анемометр Testo 417 внесен в Госреестр средств измерения РФ (№ 17273-11). Измерение скорости и температуры воздуха с применением анемометра Testo 417 соответствует требованиям ГОСТ Р 52931-2008, ГОСТ 8.558-2009 и ГОСТ 8.542-86 ГСИ. Поверка проводится по методике МП РТ 1574-2021. Межповерочный интервал – 1 год. Свидетельство о поверке в стандартный комплект поставки не входит и поставляется по заявке. Производитель: Testo AG – Германия. Срок гарантии – 2 года. Средняя наработка на отказ – 5 000 часов. Ремонт прибора проводится в московском сервисном центре.
Метрологические и технические характеристики измерителей Testo 405, Testo 416, Testo 417, Testo 425 приведены в следующей таблице:
Характеристики | Testo 405 | Testo 416 | Testo 417 | Testo 425 |
Диапазон измерений: скорости воздушного потока, температуры | от 0,1 до 10,0 м/c от 0 до 50 °С | от 0,6 до 40,0 м/c – | от 0,3 до 20,0 м/c от 0 до 50 °С | от 0,1 до 20,0 м/c от – 20 до 70 °С |
Диапазон показаний: скорости воздушного потока, температуры | от 0 до 10 м/c от 0 до 50 °С | от 0 до 40 м/c – | от 0 до 20 м/c от 0 до 50 °С | от 0 до 20 м/c от – 20 до 70 °С |
Значение единицы младшего разряда | 0,01 м/с 0,1 °С | 0,1 м/с – | 0,01 м/с 0,1 °С | 0,01 м/с 0,1 °С |
Пределы допускаемых значений основной абсолютной погрешности: – скорости воздушного потока, м/с; – температуры, °С | Δv = ± (0,1 0,05V) в диапазоне (0,10…2,00) м/с Δv = ± (0,3 0,05V) в диапазоне (2,01…10,00) м/с Δt = ± 0,5 | Δv = ± (0,2 0,05V) – | Δv = ± (0,1 0,05V) Δt = ± 0,5 | Δv = ± (0,1 0,05V) Δt = ± 0,5 в диапазоне (0…50)°С Δt = ± 0,7 (в остальном диапазоне) |
Пределы допускаемой дополнительной абсолютной погрешности, вызванной изменением температуры на 1 °С от нормальной (20 ± 5) °С, м/с | ± 0,3Δv | – | – | ± 0,3Δv |
V – значение скорости воздушного потока, м/с; Δv – пределы допускаемых значений основной абсолютной погрешности при измерении скорости воздушного потока, м/с; Δt – пределы допускаемых значений основной абсолютной погрешности при измерении температуры, °С | ||||
Рабочая среда | воздух | |||
Напряжение питания, В | 4,5 | 9 | 9 | 9 |
Диапазоны рабочих температур, °С | от 0 до 50 | от – 20 до 50 | от 0 до 50 | от – 20 до 50 |
Относительная влажность, %, не более | 80 | |||
Диапазоны температуры хранения, °С | от – 20 до 70 | от – 40 до 85 | от – 40 до 85 | от – 40 до 85 |
Габаритные размеры (Д × Ш × В), мм, не более | 300 × 37 × 36 | 182 × 64 × 40 | 277 × 105 × 45 | 182 × 64 × 40 |
Масса, кг, не более | 0,115 | 0,325 | 0,230 | 0,285 |
Наработка на отказ, ч | 5000 | 5000 | 5000 | 5000 |
Видео презентация анемометра Testo 417
Подпишитесь на наш канал YouTube
Комплект поставки:
Дополнительные материалы:
Купить анемометр Testo-417 можно по официальной цене производителя указанной в прайс-листе. Цена Testo 417 указана с учетом НДС. Смотрите так же разделы: Тепловой контроль, Измерители теплопроводности, Пирометры, Аттестация специалистов по тепловому контролю.
Анемометр Тесто 417 можно купить с доставкой до двери или до терминалов транспортной компании в следующих городах: Москва, Санкт-Петербург, Екатеринбург, Саратов. Амурск, Ангарск, Архангельск, Астрахань, Барнаул, Белгород, Бийск, Брянск, Воронеж, Великий Новгород, Владивосток, Владикавказ, Владимир, Волгоград, Волгодонск, Вологда, Иваново, Ижевск, Йошкар-Ола, Казань, Калининград, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курск, Липецк, Магадан, Магнитогорск, Мурманск, Муром, Набережные Челны, Нальчик, Новокузнецк, Нарьян-Мар, Новороссийск, Новосибирск, Нефтекамск, Нефтеюганск, Новочеркасск, Нижнекамск, Норильск, Нижний Новгород, Обнинск, Омск, Орёл, Оренбург, Оха, Пенза, Пермь, Петрозаводск, Петропавловск-Камчатский, Псков, Ржев, Ростов, Рязань, Самара, Саранск, Смоленск, Сочи, Сыктывкар, Таганрог, Тамбов, Тверь, Тобольск, Тольятти, Томск, Тула, Тюмень, Ульяновск, Уфа, Ханты-Мансийск, Чебоксары, Челябинск, Череповец, Элиста, Ярославль и другие города, кроме того, в Республике Крым. А также Республики Казахстан, Белоруссия и другие страны СНГ.
Анемометры ручной крыльчатый чашечный индукционный
Анемометры — это приборы для измерения скорости движения воздуха.
В санитарно-гигиенических целях наиболее часто используются следующие виды анемометров.
Ручной крыльчатый (вентиляционный) анемометр предназначен для измерения скорости направленного воздушного потока в трубопроводах и каналах вентиляционных устройств. Порог чувствительности прибора 0,2 м/сек. Предел измерения 0,3—0,5 м/сек. Приемная часть прибора — легкое ветровое колесо (крыльчатка) (рис., а, 1), огражденное металлическим кольцом для защиты от механических повреждений. Движение оси крыльчатки передается на систему зубчатых колес, приводящих в движение стрелки счетного механизма (рис., а, 2).
Ручной чашечный анемометр служит для определения средних скоростей ветра. Приемная часть прибора — вертушка (рис., б, 1) из четырех полых полушарий, обращенных выпуклыми поверхностями в одну сторону. Счетный механизм (рис., б, 2) заключен в пластмассовую коробку. Вертушка закреплена на металлической оси, нижний конец которой связан со счетным механизмом; проволочные дужки (рис., б, 3) служат для защиты вертушки от случайных повреждений. Три стрелки на циферблате прибора показывают число оборотов полушарий вокруг оси: большая — число единиц и десятков, а две маленькие — число сотен и тысяч. Предел измерения скорости воздуха от 1 до 20,0 м/сек; порог чувствительности 0,8 м/сек.
Кроме описанных анемометров с механическим счетчиком, промышленность выпускает приборы с электрическим счетчиком. К ним относится анемометр ручной индукционный АРИ-49 (рис. в).
Правила работы с анемометром: прибор приподнимают в вытянутой руке (или закрепляют на шесте), ориентируя его по току ветра. Наблюдение ведут в течение 10 минут. При пользовании первыми двумя анемометрами с механическими счетчиками скорость движения воздуха определяют по поверочному свидетельству, прилагаемому к прибору; при пользовании АРИ-49 переводных вычислений не требуется, скорость ветра (в м/сек) указана на шкале анемометра.
Анемометры:
а — ручной крыльчатый (вентиляционный);
б — ручной чашечный;
в — ручной индукционный
Анемометры (от греч. anemos — ветер и metred — измеряю) — это метеорологические приборы для измерения элементов ветра. Воздушные потоки характеризуются скоростью и направлением. Анемометрами можно определить один из этих элементов (обычно скорость) или оба. В медицинско-санитарной практике анемометры применяют для наблюдений за движением воздушных потоков в открытой атмосфере; однако гораздо чаще ими пользуются в закрытых помещениях: в лабораторных и производственных условиях для измерения скорости воздушных потоков во всасывающих и приточных отверстиях механической и естественной вентиляции с целью определения ее эффективности, при исследовании метеорологических условий в рабочих помещениях промышленных предприятий, в общественных зданиях и др. Прибором измеряют среднюю скорость потоков за определенный промежуток времени (ее выражают обычно в м/сек). Принцип действия большинства анемометров основан на явлении силового (динамического) давления, оказываемого воздушным потоком на встречное препятствие; скорость при этом определяется по силе давления потока на движущуюся жесткую систему прибора (аэродинамические анемометры). Существуют приборы для определения скорости воздушных потоков так называемым манометрическим способом; их воспринимающей частью является трубка Пите (подпорная, или пневмометрическая, трубка). Наконец, скорость воздушных потоков можно определить и по величине охлаждения предварительно нагретого тела под действием измеряемого воздушного потока (см. Кататермометр).
Направление движения воздушных потоков определяется чаще всего флюгаркой — пластинкой клиновидной формы с противовесом; встречается флюгарка из двух пластинок, расположенных под углом в 20°, такая флюгарка более чувствительна. Направление ветра обозначается наименованием страны света, откуда он дует; точки горизонта, откуда ветер дует, называются румбами; горизонт делится на 8 или 16 румбов (рис. 1). В гигиенической практике учитывают обычно господствующие (преобладающие) направления ветров в данной местности; они определяются путем длительных (обычно в течение года) ежесуточных наблюдений. На этом основании составляется график или так называемая роза ветров (рис. 2), выражающая процентное соотношение за год числа случаев ветров за каждый день по каждому румбу и дней штиля. Направление преобладающих ветров имеет важное гигиеническое значение: их обязательно учитывают при планировке населенных мест(см.), при строительстве лечебно-профилактических учреждений (больниц, санаториев и др.), а также при размещении промышленных предприятий и спортивных сооружений.
Рис. 1. Схема расположения румбов.
Рис. 2. Роза ветров с преобладающим северо-западным направлением ветров.
В гигиенической практике пользуются следующими видами анемометров. Ручной анемометр (чашечный, Фюсса) (рис. 3) — портативный, удобный в работе, широко распространенный в санитарной практике прибор. Приемная его часть представляет вертушку из 4 полых полушарий (чашек), закрепленную на металлической оси, нижний конец которой связан со счетным механизмом. Стрелки на циферблате прибора показывают число оборотов полушарий вокруг оси: большая — число единиц и десятков, а две маленькие — число сотен и тысяч. Для включения и выключения счетчика оборотов на коробке прибора имеются рычаг и два кольца. Винт, прикрепленный к анемометру снизу, предназначен для установки прибора на шесте высотой 2 м. Измерение скорости ветра: записывают показания всех стрелок (на малых циферблатах учитывают только целые деления), устанавливают прибор на шесте строго вертикально (в открытой атмосфере лучше держать прибор в вытянутой вверх руке), став лицом против ветра (шкала анемометра обращена к наблюдателю), выжидают 1—2 мин., пока не наступит полная скорость вращения вертушки, после чего шнуром включают анемометр (рис. 4) и одновременно секундомер; наблюдение ведется в течение 10 мин. Вычислив разность между двумя показаниями счетчика (исходным и после 10 мин. работы анемометра) и разделив эту величину на время наблюдения, выраженное в секундах, получают число оборотов в 1 сек. Эта величина приблизительно соответствует искомой скорости движения воздушного потока; для получения более точной величины пользуются таблицей для перевода числа оборотов в скорость (прилагается к каждому прибору). Прибор служит для определения средних скоростей ветра в пределах 1,0—20,0 м/сек.
Рис. 3. Ручной чашечный анемометр.
Рис. 4. Включение и выключение анемометра шнуром.
Рис. 5. Ручной крыльчатый (вентиляционный) анемометр.
Крыльчатые анемометры с мельничкой (вентиляционные). Приемной частью их служит крыльчатка (мельничка) из легких металлических лопастей, посаженных на соединенную со счетчиком оборотов горизонтальную ось. Приборы особенно чувствительны и применяются поэтому для измерения скоростей воздушных потоков в каналах вентиляционных установок.
Ручной крыльчатый анемометр (вентиляционный) (рис.5). При работе прибор ориентируется по потоку так, чтобы счетный механизм был позади потока относительно крыльчатки; для преодоления инерции сопротивления прибора достаточно крыльчатке вращаться вхолостую всего 0,5 мин.; продолжительность наблюдения ограничивается 2 мин.; порядок расчета средней скорости потока такой же, как у предыдущего типа анемометра; пределы измерения скорости воздушных потоков 0,3— 5,0 м/сек.
Вентиляционный дифференциальный анемометр (рис. 6) снабжен небольшой воздуходувкой с вентилятором, приводящей мельничку в движение. Это приспособление служит для преодоления инерции сопротивления прибора и тем самым значительно повышает его чувствительность: им можно измерить скорость, начиная с 0,02 м/сек.
Рис. 6. Вентиляционный дифференциальный анемометр. Справа — схема действия воздушного потока, образующегося под действием вентилятора.
Работают с анемометром так: заводят ключом механизм вентилятора (вне сферы действия потока воздуха), включают счетчик, записывают скорость вращения крыльчатки под действием только вентилятора. Затем снова заводят пружину вентилятора и ставят анемометр так, чтобы воздушный поток был направлен в сторону крыльчатки, снова отмечают показания счетчика; разность между вторым и первым показаниями прибора покажет скорость воздушного потока.
Электрические анемометры. К приборам с электрическими тахометрами (механизмы для определения числа оборотов) относятся: индукционный анемометр и контактный анемометр. Приемная часть ручного индукционного анемометра (рис. 7) — трехчашечная вертушка, ось которой связана с магнитной системой (генератором электротока); шкала прибора градуирована в м/сек; пределы измерений скорости потоков 0,2—30,0 м/сек. Работают с прибором, как с обычным ручным анемометром (Фюсса). Для повышения точности следует провести несколько измерений с интервалом в 0,5 мин. и взять среднее значение.
Рис. 7. Ручной индукционный анемометр.
Анеморумбометры — приборы, служащие для определения скорости и направления ветра. Простейший из них — флюгер Вильда (рис. 8), применяемый главным образом в лечебно-профилактических учреждениях, на пляжах, площадках для воздушных ванн и т. п. При вращении флюгарки доска всегда принимает положение, перпендикулярное направлению ветра, и под давлением последнего отклоняется от отвесного положения на тот или иной угол. По положению отклоненной доски, пользуясь штифтиками-указателями, определяют скорость ветра; в приборе имеется две доски: легкая (200 г) для измерения скоростей, не превышающих 20 м/сек, и тяжелая (800 г) для скоростей до 40 м/сек. Приближенную скорость ветра можно определить, помножив номер штифтика на 2 (при пользовании легкой доской) или на 4 (при пользовании тяжелой доской). Флюгер для наблюдений устанавливают в открытом месте на сухом гладком столбе высотой 8—10 м штифтик с буквой С (N) должен быть установлен на Север (по компасу или по полуденной линии, т.е. по меридиану данного места).
Рис. 8. Флюгер Вильда: 1 — флюгарка; 2 — вертикальный стержень; 3 — трубка флюгарки; 4 — противовес; 5 — муфта для прутиков указателей румбов; 6—8 — указатель скорости, металлическая доска, рама и дуга с занумерованными штифтиками от 0 до 7.
Рис. 9. Электрический анеморумбометр (схема): 1 — вертушка; 2 — магнит; 3 — соединительные провода; 4 — кнопка; 5 — указатель скорости.
Электрический анеморумбометр (рис. 9) — прибор чашечного типа. Принцип его действия основан на преобразовании механической энергии, развиваемой вращением вертушки, в электрическую; генератором энергии является постоянный магнит (расположен в верхней неподвижной части прибора); напряжение получаемого тока измеряется милливольтметром, шкала которого градуирована в м/сек. Указателем направления ветра в приборе служит флюгарка.
Манометрический способ измерения скорости ветра. Способ весьма удобен для определения скорости движения воздуха в трубопроводах и, в частности, в воздуховодах механической вентиляции с целью расчета ее эффективности. Приборами непосредственно измеряется давление воздушного потока, на основе чего рассчитывается скорость его движения. Для определения давления пользуются трубкой Прандтля (рис. 10), включаемой в жидкостный манометр.
Рис. 10. Трубка Прандтля.
Рис. 11. Манометр из U-образной трубки с водой.
Она состоит из двух металлических трубок, впаянных одна в другую. Приемный конец прибора (т. е. тот, который вводится в просвет воздуховода) устроен так: внутренняя трубка имеет одно отверстие (на рис. в точке 1), внешняя — несколько отверстий (2, 2′, 2″, 2″‘), расположенных радиально (на рисунке — в месте разреза а — б); нижние концы трубок при помощи коротких резиновых шлангов присоединяются к жидкостному манометру; проще всего пользоваться U-образной стеклянной трубкой, заполненной до половины высоты водой и закрепленной на шкале с миллиметровыми делениями (рис. 11). Измерив разность высот воды в обоих коленах, выраженную в мм вод. ст., вычисляют (приближенно) скорость воздушного потока по формуле: v = 4 √h м/сек, где h — величина давления в мм вод. ст. (по манометру; обычно берется средняя цифра из нескольких измерений в разных точках воздуховода). Для точных измерений пользуются микроманометром.
Сила ветра в баллах по шкале бофорта и морское волнение
таблица 1
Баллы | Словесное обозначение силы ветра | Скорость ветра, м/с | Скорость ветра км/ч | Действие ветра | |
на суше | на море (баллы, волнение, характеристика, высота и длина волны) | ||||
0 | Штиль | 0-0,2 | Менее 1 | Полное отсутствие ветра. Дым поднимается вертикально, листья деревьев неподвижны. | 0. Волнение отсутствует Зеркально гладкое море |
1 | Тихий | 0,3-1,5 | 2-5 | Дым слегка отклоняется от вертикального направления, листья деревьев неподвижны | 1. Слабое волнение. На море лёгкая рябь, пены на гребнях нет. Высота волн 0,1 м, длина — 0,3м. |
2 | Легкий | 1,6-3,3 | 6-11 | Ветер чувствуется лицом, листья временами слабо шелестят, флюгер начинает двигаться, | 2. Слабое волнение Гребни не опрокидываются и кажутся стекловидными. На море короткие волны высотой 0,3 м. и длиной – 1-2м. |
3 | Слабый | 3,4-5,4 | 12-19 | Листья и тонкие ветки деревьев с листвой непрерывно колеблются, колышутся лёгкие флаги. Дым как бы слизывается с верхушки трубы (при скорости более 4 м/сек). | 3. Легкое волнение Короткие, хорошо выраженные волны. Гребни, опрокидываясь, образуют стекловидную пену, изредка образуются маленькие белые барашки. Средняя высота волн 0,6-1 м, длина – 6м. |
4 | Умеренный | 5,5-7,9 | 20-28 | Ветер поднимает пыль, бумажки. Качаются тонкие ветви деревьев и без листвы. Дым перемешивается в воздухе, теряя форму. Это лучший ветер для работы обычного ветрогенератора (при диаметре ветроколеса 3-6 м) | 4.Умеренное волнение Волны удлинённые, белые барашки видны во многих местах. Высота волн 1-1,5 м, длина – 15 м. Достаточная ветровая тяга для виндсёрфинга (на доске под парусом), с возможностью выйти в режим глиссирования (при ветре не менее 6-7 м/с) |
5 | Свежий | 8,0-10,7 | 29-38 | Качаются ветки и тонкие стволы деревьев, ветер чувствуется рукой. Вытягивает большие флаги. Свистит в ушах. | 4.Неспокойное море Хорошо развитые в длину, но не очень крупные волны, повсюду видны белые барашки (в отдельных случаях образуются брызги). Высота волн 1,5-2 м, длина – 30 м |
6 | Сильный | 10,8-13,8 | 39-49 | Качаются толстые сучья деревьев, тонкие деревья гнутся, гудят телеграфные провода, зонтики используются с трудом | 5.Крупное волнение Начинают образовываться крупные волны. Белые пенистые гребни занимают значительные площади. Образуется водяная пыль. Высота волн — 2-3 м, длина – 50 м |
7 | Крепкий | 13,9-17,1 | 50-61 | Качаются стволы деревьев, гнутся большие ветки, трудно идти против ветра. | 6.Сильное волнение Волны громоздятся, гребни срываются, пена ложится полосами по ветру. Высота волн до 3-5 м, длина – 70 м |
8 | Очень крепкий | 17,2-20,7 | 62-74 | Ломаются тонкие и сухие сучья деревьев, говорить на ветру нельзя, идти против ветра очень трудно. | 7. Очень сильное волнение Умеренно высокие, длинные волны. По краям гребней начинают взлетать брызги. Полосы пены ложатся рядами по направлению ветра. Высота волн 5-7 м, длина – 100 м |
9 | Шторм | 20,8-24,4 | 75-88 | Гнутся большие деревья, ломает большие ветки. Ветер срывает черепицу со многих крыш. | 8.Очень сильное волнение Высокие волны. Пена широкими плотными полосами ложится по ветру. Гребни волн начинают опрокидываться и рассыпаться в брызги, которые ухудшают видимость. Высота волн — 7-8 м, длина – 150 м |
10 | Сильный шторм | 24,5-28,4 | 89-102 | На суше бывает редко. Значительные разрушения строений, ветер валит деревья и вырывает их с корнем | 8.Очень сильное волнение Очень высокие волны с длинными загибающимися вниз гребнями. Образующаяся пена выдувается ветром большими хлопьями в виде густых белых полос. Поверхность моря белая от пены. Сильный грохот волн подобен ударам. Видимость плохая. Высота — 8-11 м, длина – 200 м |
11 | Жестокий шторм | 28,5-32,6 | 103-117 | Наблюдается очень редко. Сопровождается большими разрушениями на значительных пространствах. | 9. Исключительно высокие волны. Суда небольшого и среднего размера временами скрываются из вида. Море всё покрыто длинными белыми хлопьями пены, располагающимися по ветру. Края волн повсюду сдуваются в пену. Видимость плохая. Высота — 11м, длина 250м |
12 | Ураган | >32,6 | >117 | Опустошительные разрушения. Отдельные порывы ветра достигают скорости 50—60 м.сек. Ураган может случиться перед сильной грозой | 9. Исключительное волнение Воздух наполнен пеной и брызгами. Море всё покрыто полосами пены. Очень плохая видимость. Высота волн >11м, длина – 300м. |