Анемометр — Википедия Переиздание // WIKI 2

Анемометр — Википедия Переиздание // WIKI 2 Анемометр

Anemometer – перевод на русский – примеры английский | reverso context

Ничего не найдено для этого значения.

Результатов: 19. Точных совпадений: 19. Затраченное время: 19 мс


Documents

Корпоративные решения

Спряжение

Синонимы

Корректор

Справка и о нас

Индекс слова:1-300, 301-600, 601-900

Индекс выражения:1-400, 401-800, 801-1200

Индекс фразы:1-400, 401-800, 801-1200

Анемометр – прибор для определения скорости и направления движения потока

АНЕМОМЕТР – это прибор для измерения скорости потоков и направления движения воздуха, газов и жидкостей. Это касается как ограниченных потоков, например движения воздуха в воздуховодах, так и неограниченных потоков, например атмосферного ветра.

Анемометры прежде всего предназначены для метеорологии, ведь изменение таких параметров, как скорость и направление ветра, указывают нам на изменения погодных условий, предупреждают о приближении грозы, шторма, других опасных природных явлений, что очень важно для пилотов, моряков, инженеров, да и для всех нас.

Как правило, это легкие портативные приборы, удобные в использовании даже в сложных полевых условиях.

Принцип работы анемометра заключается в выявлении изменения некоторого физического свойства потока, или в действии этого потока на механическое устройство, помещенное в поток.

При этом анемометр может измерять полную величину скорости, величину скорости в плоскости, или компоненту скорости в определенном направлении.

Кроме того, современные анемометры в зависимости от модели могут измерять направление ветра, объемный расход воздуха, влажность, температуру, давление. Таким образом, анемометры превращаются в портативные метеостанции.

Типы анемометров

В зависимости от способа измерения и типа приемного устройства, анемометры разделяют на ряд типов: [5]:

Вращательные (крыльчатные, чашечные)  Тепловые  Вихревые  Динамометрические (с трубками Пито)  Ультразвуковые (акустические)  Оптические (лазерные допплеровские)

Наиболее распространенными являются вращательные анемометры, отличающиеся типом принимающего устройства (чашка или крыльчатка).

В чашечных анемометрах чувствительным элементом является крестовина с четырьмя металлическими чашками полусферической формы, закрепленными на оси.

Если это устройство попадает в поток, то давление воздуха на внутреннюю поверхность чашки превышает давление на ее внешнюю поверхность, вследствие чего возникает вращение лопасти. Ось лопасти присоединена к измерительному механизму, который подсчитывает количество оборотов за определенный промежуток времени.

https://www.youtube.com/channel/UCYNjHK7GEKPHjoAYsNTcqsg

Таким образом, чашечные анемометры проводят измерение скорости потока в плоскости, перпендикулярной к оси вращения чашек, мгновенную или усредненную в некотором промежутке времени.

Чашечные анемометры в основном используются в метеорологии для измерений на открытых участках, поскольку характеризуются определенной устойчивостью к турбулентным потокам. Диапазон измерения чашечных анемометров составляет от 1 до 50 м/с.

Крыльчатные анемометры используют для измерения скоростей потоков в трубах, вентиляционных шахтах и каналах, в системах кондиционирования, то есть в случаях, когда имеем дело с постоянным направлением движения потока. Эти анемометры более чувствительны и способны измерять скорости от 0,1 м/с.

Принимающее устройство сделано в виде крыльчатки, которая приводится в движение потоком газа. Крыльчатка прикреплена к трубчатой ​​оси, которая в свою очередь присоединена к механизму подсчета оборотов за определенный промежуток времени.

В простых моделях крыльчатка жестко присоединена к измерительному блоку, в более дорогих – с помощью гибкого соединения для измерений в труднодоступных местах.

Про анемометры:  Инструкция на Газовый напольный котел Bosch серии GAZ 3000 F. бренда Bosch - скачать pdf

Менее распространены, однако очень высокоточные тепловые анемометри. В основном, они используются для измерения скоростей медленных потоков, характеризуются низкой инерционностью, однако требуют постоянного калибровки.

Принцип работы теплового анемометра заключается в измерении температуры пластины или нити накаливания, на которую дует ветер. В зависимости от скорости ветра, необходима различная энергия для того, чтобы поддерживать температуру нити постоянной.

То есть по температуре пластины можно определить скорость ветра.

Измерение скорости потока воздуха можно проводить также путем определения давления воздуха внутри стеклянной Г-образной трубки, закрытой с одного конца. Она называется трубкой Пито, по имени ее изобретателя.

Скорость движения воздуха вычисляется путем сравнения избыточного давления воздуха внутри трубки и снаружи. Применяется для определения относительной скорости и объемного расхода в газоходах и вентиляционных системах.

Это так называемые динамометрические анемометры.

https://www.youtube.com/channel/UC_hx9c5C-sKPEr7C_yCOvKQ

Принцип работы ультразвукового анемометра основывается на измерениискорости звука междупередатчиком и приемником в зависимости от скорости ветра. Это высокоточные современные анемометры, предназначены также для измерений направления ветра.

Различают двухмерные и трехмерные ультразвуковые анемометры. Двухмерный анемометр может измерять скорость и направление только горизонтальных потоков воздуха. Трехмерный анемометр способен проводить измерения трех компонент направления движения потока.

Кроме того, ультразвуковой анемометр может измерять еще и температуру воздуха ультразвуковым методом.

Инженеры Aerospace и физики часто используют лазерные доплеровские анемометры. Этот тип анемометров работает по принципу зависимости частоты света отраженного или рассеянного подвижным объектом (эффект Доплера), от скорости этого объекта.

Это метод бесконтактного измерения скорости потока газообразных, жидких и твердых сред, содержащих светорассеивающие неоднородности, т.е. скорость измеряется без возмущения потока.

Круг задач очень широкий, от измерений медленных направленных движений в капиллярах и живых клетках, до дистанционных измерений турбулентной скорости потоков газа в сверхзвуковых трубах и скорости ветра в атмосфере. Величины скоростей могут иметь значение от мкм/с до км/с.

Лазерные анемометры помогают рассчитать скорость ветра вокруг автомобилей, самолетов и космических аппаратов. Такие исследования дают возможность инженерам сделать транспортные средства более аэродинамическими.

Сравнительные характеристики анемометров

Простейшая модель анемометра TM-740 оснащена шестилопастной крыльчаткой диаметром 30 мм, которая жестко соединена с измерительным блоком. Предназначена для измерения скорости потока воздуха в диапазоне 0,4-25 м/с. (Другие единицы измерения: км/ч, миль/ч, узлы, фут/мин).

Разрешение на уровне 0,1 м/с и погрешность ±2 % позволяет проводить достаточно прецизионные измерения, а набор дополнительных функций, таких как удержание данных, расчет максимального, минимального и усредненного значения, автоматическое отключения, делают процесс использования прибора более комфортным.

Кроме того, есть возможность измерения температуры в диапазоне -20~50 ºC (-4~122 ºF.)

Анемометры ET-935 и TA-1100 можно отнести к среднему классу по параметрам цена-качество. Они оснащены крыльчаткой на гибком шнуре, что открывает более широкие возможности для измерений в труднодоступных местах, таких как вентиляционные шахты, воздуховоды и т.д.

Диапазон измерения скорости потока таких термоанемометров от десятых м/с до 30 м/с, что позволяет работать в различных условиях.

Присутствуют и дополнительные возможности, такие как удержание данных и расчет максимального значения в модели TA-1100, расчет среднего значения в модели ET-935, а также индикация низкого заряда батареи и автовыключение.

Другие единицы измерения км/ч, миль/ч, морские мили/ч, фут/мин. Эти модели термоанемометров оснащены датчиком с диапазоном измерения температуры от -10 до 60ºС (для ET-935 от -20 до 60ºС).

Про анемометры:  Поверка анемометров от официального дистрибьютора Trotec |

К высококлассным моделям отнесем термоанемометр HD 2303.0 от одного из ведущих производителей контрольно-измерительных приборов DELTA OHM, Италия.

Этот термоанемометр предназначен для измерения скорости воздушного потока, расхода и температуры воздуха внутри трубопроводов и вентиляционных отверстий и шахт.

Целый ряд крыльчаток разного диаметра, которые совместимы с измерительным блоком, обеспечат прецизионный результат в различных условиях и для различных сред. Температура измеряется зондами погружения, проникновения или контакта.

Температурный диапазон эксплуатации термоанемометра от -5 до 50 ºC, корпус имеет степень защиты от влаги и пыли IP-67.

Отдельно следует отметить мультифункциональные анемометры, которые вместе с собственно анемометром, сочетают в себе другие функциональные возможности.

Например, модель ET-965 представляет собой уникальный прибор (5 в 1), специально созданный для комплексного экологического контроля состояния среды в закрытых помещениях.

Позволяет измерять такие параметры как: освещенность (люксметр), температура (термометр), скорость воздуха (анемометр), относительная влажность воздуха (гигрометр), шум (шумомер).

Характеризуется высокой точностью и разрешением для всех измерительных параметров, имеет дополнительные функции расчета максимума/минимума, индикация о низком заряде и превышение измерительного диапазона. Предназначен для применения в учебных заведениях, офисных помещениях, складских помещениях, торговых залах и т.д.

Анемометры AZ-96792 и AZ-8919 (AZ Instrument, Тайвань) также являются мультифункциональными. Они просты и удобны в пользовании, обеспечивают высокоточные результаты измерений, имеют ряд дополнительных возможностей для удобства пользователя, все это в сочетании с умеренной ценой для приборов такого класса.

Модель AZ-96792 оснащена телескопическим зондом с крыльчаткой 18 мм для измерения скорости потока воздуха в труднодоступных местах, работает в ручном и автоматическом режиме, обеспечивает измерение / запись следующих параметров: скорость движения воздуха, объемный расход воздуха, влажность, температура, точка росы и температура мокрого термометра.

Анемометр-анализатор может контролировать уровень углекислого газа в воздухе, для чего дополнительно оборудован высокоточным недисперсионным инфракрасным датчиком (NDIR).

Зонд крыльчатого типа диаметром 10 см и конус для забора воздушного потока позволяют измерять скорость потока в пределах от 0,2 до 30 м/с. Измеряет также объемный расход воздуха, влажность, температуру, точку росы, температуру мокрого термометра.

Имеет функции максимального и минимального значения, неограниченное количество точек для расчета среднего значения, подсветку.

Как определить объемный расход потока воздуха, зная его линейную скорость

В процессе измерения часто возникает потребность рассчитать объемный расход воздуха, зная его линейную скорость. Сделать это на самом деле очень просто. Для этого необходимо лишь измерить поперечное сечение отверстия, через которое протекает поток (воздуха, любого другого газа или жидкости). Далее воспользуемся формулой:

Q = V * Sгде Q – объемный расход в м3/с,V –скорость потока в сечении в м/с (измеряем с помощью анемометра),S – площадь поперечного сечения отверстия в м2 (измеряем рулеткой).

Как выбрать анемометр

Для оптимального выбора измерительного прибора, прежде всего определитесь, в каком диапазоне скоростей Вам необходимо работать, проанализируйте технические требования к точности и разрешению. Это является определяющим при выборе типа анемометра (тепловой, крыльчатый, оптический и т.д.)

Подбирайте размер крыльчатки в зависимости от того, где именно Вам нужно проводить измерения. Например, для измерений непосредственно на вентиляционных решетках подойдут анемометры с большим диаметром крыльчатки (6-10 см).

В таком случае размеры лопастей соразмерны с диаметром вентиляционных каналов. Тогда как для измерений непосредственно в вентиляционном канале лучше использовать крыльчатки с меньшим диаметром (1,5-2,5 см).

Про анемометры:  Электронная педаль газа. Плюсы и минусы. Контроль | АвтобурУм

Для измерений потоков газов высокой температуры нужно использовать термостойкие крыльчатки.

Обратите внимание на способ визуализации полученных результатов и форму их подачи. Современные анемометры как правило оснащены для этого ЖК экраном.

Измерение скорости потока для удобства может проводиться в различных единицах (миль/ч, км/ч, футы/мин, м/с, узлы и т.д.).

Более дорогие модели имеют возможности подключения к ПК с целью обработки результатов, построения графиков и последующего анализа.

Проанализируйте необходимость присутствия дополнительных возможностей и функций.

Например, гигро- и термоанемометры включают возможности термоанемометра и датчика влажности и обеспечивают пользователя полной метеорологической информацией.

Возможности расчета максимального, минимального и усредненного значений упрощают статистический анализ, автоматическое отключение экономит заряд батареи, подсветка позволяет работать в условиях ограниченной освещенности.

Если Вам все же трудно определиться с моделью, обратитесь за консультацией к специалистам Маркета измерительных приборов SIMVOLT.

Таким образом, анемометры и термоанемометры нашли широкое применение везде, где есть необходимость измерения скорости потоков.

Такие приборы устанавливаются в жилых и производственных помещениях, оборудованных системами вентиляции, отопления и кондиционирования для контроля работы этих систем, в вытяжных шкафах, в научно-исследовательских лабораториях, в горном деле для контроля воздушного режима шахты или карьера, на строительстве, при разработке противопожарных систем, и для других нужд.

Литература:

Гнатюк Елена, к.ф.-м. наук,

научный консультант SIMVOLT

Чашечный анемометр

Наиболее распространённый тип анемометра — это чашечный анемометр. Изобретён доктором Джоном Томасом Ромни Робинсоном, работавшим в Арманской обсерватории, в 1846 году. Состоит из четырёх полусферических чашек, симметрично насаженных на крестообразные спицы ротора, вращающегося на вертикальной оси.

Ветер любого направления вращает ротор со скоростью, пропорциональной скорости ветра.

Робинсон предполагал, что для такого анемометра линейная скорость кругового вращения чашек составляет одну треть от скорости ветра, и не зависит от размера чашек и длины спиц. Проделанные в то время эксперименты это подтверждали. Более поздние измерения показали, что это неверно, т. н. «коэффициент анемометра» (величина, обратная отношению линейной скорости к скорости ветра) для простейшей конструкции Робинсона зависит от размеров чашек и длины спиц и лежит в пределах от двух до чуть более трёх.

Трёхчашечный ротор, предложенный канадцем Джоном Паттерсоном в 1926 году, и последующие усовершенствования формы чашек Бревортом и Джойнером в 1935-м году сделали чашечный анемометр линейным в диапазоне до 100 км/ч (27 м/с) с погрешностью около 3 %.

Оригинальное усовершенствование чашечной конструкции, предложенное австралийцем Дереком Вестоном (в 1991 г.), позволяет с помощью того же ротора определять не только скорость, но и направление ветра. Оно заключается в установке на одну из чашек флажка, из-за которого скорость ротора неравномерна в течение одного оборота (половину оборота флажок движется по ветру, половину оборота — против).

Вращение ротора в простейших анемометрах передаётся на механический счётчик числа оборотов. Скорость подсчитывается по числу оборотов за заданное время, например, минуту, таковы ручные анемометры[5].

В более совершенных анемометрах ротор связан с тахогенератором, выходной сигнал которого (напряжение) подаётся на вторичный измерительный прибор (вольтметр), или используются тахометры, основанные на иных принципах.

Помимо метеорологических измерений, чашечные анемометры применяются и на башенных подъёмных кранах, для сигнализации об опасном превышении скорости ветра.

Оцените статью
Анемометры
Добавить комментарий